Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
17-78. The100-kg pendulum has a center of mass at G and a radius of gyration about G of kg = 250 mm. Determine the horizontal and vertical components of reaction on the beam by the pin A and the normal reaction of the roller B at the instant 6 = 07 when the pendulum isrotating at @ = 4 rad/s. Neglect the weight of the beam and the support.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 5 steps with 7 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The wheel is attached to the spring. The mass of the wheel is m=20 kg. The radius of the wheel is 0.6m. The radius of gyration kG=0.4 m. The spring’s unstretched length is L0=1.0 m. The stiffness coefficient of the spring is k=2.0 N/m. The wheel is released from rest at the state 1 when the angle between the spring and the vertical direction is θ=30°. The wheel rolls without slipping and passes the position at the state 2 when the angle is θ=0°. The spring’s length at the state 2 is L2=4 m. Ignore the spring's mass. (5) At state 2, how long the spring is stretched from its unstretched state (length difference):________(m) (two decimal places) (6) The elastic potential energy of the spring at the state 2 is_______(N·m) (two decimal places) (7) The instantaneous center of zero velocity (IC) of the wheel at state 1 is (8) The mass moment of inertial of the wheel about its mass center G is IG =_________(kg·m2 ) (two decimal places)arrow_forwardThe mobile crane is symmetrically supported by two outriggers at A and two at B to relieve the suspension of the truck upon which it rests and to provide greater stability. If the truck, crane, and counter-weight have a total mass of 18-tonnes and center of mass at G1, while the boom has a mass of 1.8-tonnes and a center of mass at G2, determine the critical angle where tipping starts to occur when the boom is supporting a load having a mass of 3-tonnes. Plot the total reactions at A and B (in kN) as functions of θ from θ=0° to the critical angle.arrow_forwardSOLVE USING PRINCIPLE OF WORK AND ENERGYarrow_forward
- The 45-kg reel has a radius of gyration about its center O of ko = 220 mm. If it is released from rest, determine the total external work done to it when its center O has traveled 6.6 m down the smooth inclined plane (with angle = 35°). Please pay attention: the numbers may change since they are randomized. Your answer must include 1 place after the decimal point, and proper SI unit. Take g = 9.81 m/s². 0.4 m 0.2 m²arrow_forwardAt the instant shown, link CD rotates with an angular velocity of W = 9.0 rad/s. If it is subjected to a couple moment M= 320 N-m, determine the magnitude of the vertical reaction force developed on pin D. The block has a mass of 50 kg and center of mass at G. Neglect the mass of links AB and CD. (Hint, since the mass of link AB or CD is negligible, the external force or moment acting on it sums up to 0.) Please pay attention: the numbers may change since they are randomized. Your answer must include 1 place after the decimal point, and proper unit. Take g = 9.81 m/s². 0.1 m 0.6 m В А 0.4 m' G 0.4 m D C M Your Answer: Answer unitsarrow_forwardThe wheel is attached to the spring. The mass of the wheel is m=20 kg. The radius of the wheel is 0.6m. The radius of gyration kG=0.4 m. The spring’s unstretched length is L0=1.0 m. The stiffness coefficient of the spring is k=2.0 N/m. The wheel is released from rest at the state 1 when the angle between the spring and the vertical direction is θ=30°. The wheel rolls without slipping and passes the position at the state 2 when the angle is θ=0°. The spring’s length at the state 2 is L2=4 m. (1) If the mass center G is set as the origin (datum), the gravitational potential energy at the state 1 is___ (two decimal places)arrow_forward
- Please don't provide handwritten solution....arrow_forwardThe 186-kg wheel has a radius of gyration about its center O of ko = 300 mm, and radius r = 0.4 m. When the wheel is subjected to the constant couple moment M = 92 N.m, it starts rolling from rest. Determine the average friction force that the ground applies to the wheel if it has been rolling without slipping. Please pay attention: the numbers may change since they are randomized. Your answer must include 2 places after the decimal point, and proper Sl unit. Take g = 9.81 m/s². M Your Answer: units Answerarrow_forward21-50. The bent uniform rod ACD has a weight of 5 lb/ft and is supported at A by a pin and at B by a cord. If the vertical shaft rotates with a constant angular velocity w = 20 rad/s, determine the x, y, z components of force and moment developed at A and the tension in the cord. -1 t- -0.5 ft- |B 1 ftarrow_forward
- 17-110. The 15-lb disk rests on the 5-lb plate. A cord is wrapped around the periphery of the disk and attached to the wall at B. If a torque M = 40 lb - ft is applied to the disk, determine the angular acceleration of the disk and the time needed for the end C of the plate to travel 3 ft and strike the wall. Assume the disk does not slip on the plate and the plate rests on the surface at D having a coefficient of kinetic friction of 4, = 0.2. Neglect the mass of the cord. M = 40 lb · ft -3 ft-arrow_forward17-73. Cable is unwound from a spool supported on small rollers at A and B by exerting a force T = 300 N on the cable. Compute the time needed to unravel 5 m of cable from the spool if the spool and cable have a total mass of 600 kg and a radius of gyration of ko = 1.2 m. For the calculation, neglect the mass of the cable being unwound and the mass of the rollers at A and B. The rollers turn with no friction. T = 300 N 15 m 0.8 m. 30° B.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY