The working fluid of a liquid-vapor cycle is 1kg of R-134a. The cycle operates between two pressures 100kPa and 1200kPa. • Process A-B: An isobaric compression at the high pressure to a saturated liquid. • Process B-C: An iso-entropic process from the high pressure to the low pressure. • Process C-D: An isobaric expansion at the low pressure to a saturated vapor. • Process D-A: An iso-entropic process from the low pressure to the high pressure. a) Make a table of the temperature, pressure, volume, internal energy, enthalpy, entropy and quality factor (T, P, V, U, H, S & x) at the start of each process. b) Make a table of the change in internal energy, heat flow, work done, change in enthalpy, and change in entropy (AU, Q, W, AH, AS) during each leg of the cycle. c) Draw well-labelled P-V & T-S diagrams (indicating lines of constant pressure, the saturation dome, heat flow, work, etc.) d) Calculate the coefficient of performance of the cycle (O. /W).

Refrigeration and Air Conditioning Technology (MindTap Course List)
8th Edition
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Chapter28: Special Refrigeration Applications
Section: Chapter Questions
Problem 15RQ: Why is two-stage compression popular for extra-low-temperature refrigeration systems?
icon
Related questions
Question
The working fluid of a liquid-vapor cycle is 1kg of R-134a. The cycle operates between two pressures 100kPa
and 1200kPa.
• Process A-B: An isobaric compression at the high pressure to a saturated liquid.
• Process B-C: An iso-entropic process from the high pressure to the low pressure.
• Process C-D: An isobaric expansion at the low pressure to a saturated vapor.
• Process D-A: An iso-entropic process from the low pressure to the high pressure.
a) Make a table of the temperature, pressure, volume, internal energy, enthalpy, entropy and quality factor (T,
P, V, U, H, S & x) at the start of each process.
b) Make a table of the change in internal energy, heat flow, work done, change in enthalpy, and change in
entropy (AU, Q, W, AH, AS) during each leg of the cycle.
c) Draw well-labelled P-V & T-S diagrams (indicating lines of constant pressure, the saturation dome, heat flow,
work, etc.)
d) Calculate the coefficient of performance of the cycle (Q₁ / W).
Transcribed Image Text:The working fluid of a liquid-vapor cycle is 1kg of R-134a. The cycle operates between two pressures 100kPa and 1200kPa. • Process A-B: An isobaric compression at the high pressure to a saturated liquid. • Process B-C: An iso-entropic process from the high pressure to the low pressure. • Process C-D: An isobaric expansion at the low pressure to a saturated vapor. • Process D-A: An iso-entropic process from the low pressure to the high pressure. a) Make a table of the temperature, pressure, volume, internal energy, enthalpy, entropy and quality factor (T, P, V, U, H, S & x) at the start of each process. b) Make a table of the change in internal energy, heat flow, work done, change in enthalpy, and change in entropy (AU, Q, W, AH, AS) during each leg of the cycle. c) Draw well-labelled P-V & T-S diagrams (indicating lines of constant pressure, the saturation dome, heat flow, work, etc.) d) Calculate the coefficient of performance of the cycle (Q₁ / W).
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Power Plant Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Refrigeration and Air Conditioning Technology (Mi…
Refrigeration and Air Conditioning Technology (Mi…
Mechanical Engineering
ISBN:
9781305578296
Author:
John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:
Cengage Learning