The velocity distribution in a fully developed laminar pipe flow is given by where UCL is the velocity at the centerline, and R is the pipe radius. The fluid density is ρ, and its viscosity is µ. (a) Find the average velocity  . (b) Write down the Reynolds number Re based on average velocity and pipe diameter. At what approximate value of this Reynolds number would you expect the flow to become turbulent? Why is this value only approximate? (c) Assume that the stress/strain rate relationship for the fluid is Newtonian. Find the wall shear stress τw in terms of µ, R and UCL. Express the local skin friction coeffient Cf in terms of the Reynolds number Re.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

The velocity distribution in a fully developed laminar pipe flow is given by

where UCL is the velocity at the centerline, and R is the pipe radius. The fluid density is ρ, and its viscosity is µ. (a) Find the average velocity  .

(b) Write down the Reynolds number Re based on average velocity and pipe diameter. At what approximate value of this Reynolds number would you expect the flow to become turbulent? Why is this value only approximate?

(c) Assume that the stress/strain rate relationship for the fluid is Newtonian. Find the wall shear stress τw in terms of µ, R and UCL. Express the local skin friction coeffient Cf in terms of the Reynolds number Re.

 

Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Properties of Fluids
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY