Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN: 9781259696527
Author: J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
thumb_up100%
In a process plant handling benzene compounds, a vertical thermosyphon reboiler is used in a column distilling crude benzene at 1 bar. Steam is available at 20 bar with the column bottom pressure 1.2 bar. Boiling point of benzene is 180 °C at a pressure of 1.2 bar. Molecular weight of benzene is 78 kg/kmol. Critical temperature of benzene is 652 K. Latent heat of vaporization is 39,000 kJ/kmol. Saturation temperature of steam is 215 °C. Heat load is 700 kW and heat flux is 28,000 W/m2.
Reboiler Configuration: Tubes are 25 m.m O.D and 20 m.m I.D of 2 m long with triangular pitch arrangement.
Determine the following design parameters:
i. Area required for reboiler & amount of vaporization per hour
ii. Shell inside diameter with shell clearance of 34 m.m and number of tube passes =2.
iii. Outlet pipe diameter of outlet pipe and state the assumption
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 5 steps with 4 images
Knowledge Booster
Similar questions
- Calculate the heat capacity for formaldehyde at 25°C. Answer should be in kJ/kgmol°Carrow_forward05: Acetylene gas (C₂H₂) at 25 °C is burned during a steady-flow combustion process with 30 percent excess air at 27 °C. It is observed that 75x10³ kJ of heat is being lost from the combustion chamber to the surroundings per kmol of acetylene. Assuming combustion is complete, determine the exit temperature of the product gases.arrow_forwardFruit juices at 30 ° C containing 5% total solids were concentrated via a single effect evaporator. The evaporator is operated in a vacuum at an evaporation temperature of 80 ° C, and 90% quality steam is supplied at 169.06 kPa. The desired concentration of the final product is 40% total solids. The rate of concentrated product leaving the evaporator is 2000 kg / hour. The specific heat of fruit juice is 4.05 kJ / (kg ° C), and the concentrated product is 3,175 kJ / (kg ° C). Count a. The required steam rate is = kg / hour. b. Steam economy when the condensate temperature is released at 90 ° C. = (kg of water evaporates / kg of steam)arrow_forward
- 1:02 AM ll Verizon 99%- Done 4. The enthalpy of vaporization of water at 100 °C is 2256.9 kJ/Kg. Assuming an average heat capacity for liquid water and heat capacity of vapor calculate the heat of vaporization at 25 °C. At 25 °C the vapor pressure of water is 23.756 mm Hg.arrow_forwardFruit juices at 25 ° C containing 5% total solids were concentrated via a single effect evaporator. The evaporator is operated in a vacuum at an evaporation temperature of 80 ° C, and 85% quality steam is supplied at 169.06 kPa. The desired concentration of the final product is 40% total solids. The rate of concentrated product leaving the evaporator is 2000 kg / hour. The specific heat of fruit juice is 4.05 kJ / (kg ° C), and the concentrated product is 3,175 kJ / (kg ° C). Count a. The required steam rate is = Answer kg / hour. b. Steam economy when the condensate temperature is released at 90 ° C. = Answer (kg of water evaporated / kg of steam)arrow_forward8.29 Show complete solution and diagramarrow_forward
- Fruit juices at 25 ° C containing 5% total solids were concentrated via a single effect evaporator. The evaporator is operated in a vacuum at an evaporation temperature of 80 ° C, and 85% quality steam is supplied at 169.06 kPa. The desired concentration of the final product is 40% total solids. The rate of concentrated product leaving the evaporator is 2000 kg / hour. The specific heat of fruit juice is 4.05 kJ / (kg ° C), and the concentrated product is 3,175 kJ / (kg ° C). Count a. The required steam rate is = kg / hour. b. Steam economy when the condensate temperature is released at 90 ° C. = (kg of water evaporates / kg of steam)arrow_forwardFruit juices at 20 ° C containing 5% total solids were concentrated via a single effect evaporator. The evaporator is operated in a vacuum at an evaporation temperature of 80 ° C, and 85% quality steam is supplied at 169.06 kPa. The desired concentration of the final product is 40% total solids. The rate of concentrated product leaving the evaporator is 3000 kg / hour. The specific heat of fruit juice is 4.05 kJ / (kg ° C), and the concentrated product is 3,175 kJ / (kg ° C). Count a. The required steam rate is = Answerkg / hour. b. Steam economy when the condensate temperature is released at 90 ° C. = Answer (kg of water evaporates / kg of steam)arrow_forward1. Fruit juice at 20 ° C containing 5% total solids concentrated via a single effect evaporator. The evaporator is operated in a vacuum at an evaporation temperature of 80 ° C, and 90% quality steam is supplied at 169.06 kPa. The desired concentration of the final product is 40% total solids. The rate of concentrated product leaving the evaporator is 2500 kg / hour. The specific heat of fruit juice is 4.05 kJ / (kg ° C), and the concentrated product 3.175 kJ / (kg ° C). CountA. The required steam rate is = Answererkg / hour.b. Steam economy if the condensate temperature cannot be released at 90 ° C. = Answer (kg evaporated air / kg steam)arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The