College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
thumb_up100%
The uniform thin rod in the figure below has mass M = 2.00 kg and length L = 3.25 m and is free to rotate on a frictionless pin. At the instant the rod is released from rest in the horizontal position, find the magnitude of the rod's angular acceleration , the tangential acceleration of the rod's center of mass, and the tangential acceleration of the rod's free end.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 4 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A uniform, solid sphere of radius 4.00 cm and mass 4.50 kg starts with a purely translational speed of 2.50 m/s at the top of an inclined plane. The surface of the incline is 2.75 m long, and is tilted at an angle of 34.0° with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed vz at the bottom of the ramp. U2 = m/sarrow_forwardA dragster starts from rest and accelerates down a track. Each tire has a radius of 0.320 m and rolls without slipping. At a distance of 358 m, the angular speed of the wheels is 289 rad/s. Determine (a) the linear speed of the dragster and (b) the magnitude of the angular acceleration of its wheels.arrow_forwardThe left-hand end of a uniform rod of length L and mass m is attached to a vertical wall by a frictionless hinge. The rod is held at an angle θ above the horizontal by a horizontal wire that runs between the wall and the right-hand end of the rod. The wire breaks and the rod rotates about the hinge. What is the angular speed of the rod as the rod passes through a horizontal position? (Express your answer in terms of some or all of the variables m, g, L, θ.)arrow_forward
- The wheels of a wagon can be approximated as the combination of a thin outer hoop, of radius ?h=0.156 m and mass 5.08 kg , and two thin crossed rods of mass 7.37 kg each. A farmer would like to replace his wheels with uniform disks ?d=0.0651 m thick, made out of a material with a density of 5530 kg per cubic meter. If the new wheel is to have the same moment of inertia about its center as the old wheel about its center, what should the radius of the disk be?arrow_forwardA solid cylinder is mounted above the ground with its axis of rotation oriented horizontally. A rope is wound around the cylinder and its free end is attached to a block of mass 55.0 kg that rests on a platform. The cylinder has a mass of 255 kg and a radius of 0.490 m. Assume that the cylinder can rotate about its axis without any friction and the rope is of negligible mass. The platform is suddenly removed from under the block. The block falls down toward the ground and as it does so, it causes the rope to unwind and the cylinder to rotate. (a) What is the angular acceleration, in rad/s², of the cylinder? rad/s2 (b) How many revolutions does the cylinder make in 5 s? rev (c) How much of the rope, in meters, unwinds in this time interval?arrow_forwardSuppose you exert a tangential force of 450 N to the outer edge of a .5 m radius wooden wheel mounted on a frictionless axis at the center. The weight of the wheel is 45 kg. One can assume the wheel is a solid disk. The moment of inertia (I) for a solid disk rotating at the center is given by the formula : I= 1/2mass X (radius)^2 A) what torque is exerted on the wheel? B) how much angular acceleration the wheel will experience due to applied force ?arrow_forward
- Two uniform, solid spheres (one has a mass M and a radius R and the other has a mass M and a radius Rb=2R are connected by a thin, uniform rod of length L=2R and mass M. Note that the figure may not be to scale. Find an expression for the moment of inertia I about the axis through the center of the rod. Write the expression in terms of M, R, and a numerical factor in fraction form.arrow_forwardDuring a concentric loading of the quadriceps muscle in the upper leg, an athlete extends his lower leg from a vertical position (see figure (a)) to a fully extended horizontal position (see figure (b)) at a constant angular speed of 45.0° per second. Two of the four quadriceps muscles, the vastis intermedius and the rectus femoris, terminate at the patellar tendon which is attached to the top of the tibia in the lower leg. The distance from the point of attachment of the patellar tendon to the rotation axis of the tibia relative to the femur is 4.20 cm in this athlete. A man on a leg curl machine is sitting with both legs bent such that the lower legs are vertical, as one would sit normally in a chair. barrow_forwardA gymnast on the uneven parallel bars is at rest, tipped at a 45° angle from the vertical. The distance from her hands to her feet is 1.8 m. If we model her body as having a uniform cross section and assume that her center of gravity is midway between her hands and her feet, what is her initial angular acceleration?arrow_forward
- The wheels of a wagon can be approximated as the combination of a thin outer hoop, of radius r = 0.156 m and mass 4.32 kg, and two thin crossed rods of mass 7.80 kg each. A farmer would like to replace his wheels with uniform disks = 0.0525 m thick, made out of a material with a density of 5990 kg per cubic meter. If the new wheel is to have the same ta %3D moment of inertia about its center as the old wheel about its center, what should the radius of the disk be? = PA rdarrow_forwardA disk having moment of inertia 94 kg · m2 is free to rotate without friction, starting from rest, about a fixed axis through its center. A tangential force whose magnitude can range from F = 0 to F = 50.0 N can be applied at any distance ranging from R = 0 to R = 3.00 m from the axis of rotation. (a) Find a pair of values F and R that cause the disk to complete 2.60 rev in 11.0 s. (Let F = 42.0 N be one half of the pair.)R =arrow_forwardYou are riding your bicycle down the street at a speed of 16 m/s. Your bicycle's frame has a mass of 6.0 kg, and each of its two wheels has mass 2.2 kg and radius 0.34 m. Each wheel can be thought of as a hollow hoop (assuming that the rim has much larger mass than the spokes). What is the total kinetic energy of the bicycle (in Joules), taking into account both the translational and rotational motion?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON