The stress concentration occurs whenever there is an abrupt change in the cross-section of a component or there is any discontinuity in the material. The figure given below shows a flat plate with a hole of diameter d. The plate is fixed at one end and the other end is subjected to a tensile load of P = 41 kN due to which there is a change in length of 0.4 mm. The thickness of the plate is 11 mm. The maximum stress developed in the flat plate is 235 MPa. Take Young's modulus(E) = 210 GPa and theoretical stress concentration factor =2, Calculate the following values: i) Width of the plate (W2) in mm ii) Nominal Stress in MPa iii) Diameter of the hole (d) in mm Hole with stress concentration factor 2 35 mm W2 35 mm P 300 mm 350 mm- 250 mm

Structural Analysis
6th Edition
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:KASSIMALI, Aslam.
Chapter2: Loads On Structures
Section: Chapter Questions
Problem 1P
icon
Related questions
icon
Concept explainers
Question
The stress concentration occurs whenever there is an abrupt change in the cross-section of a component or there is any discontinuity in
the material. The figure given below shows a flat plate with a hole of diameter d. The plate is fixed at one end and the other end is
subjected to a tensile load of P = 41 kN due to which there is a change in length of 0.4 mm. The thickness of the plate is 11 mm. The
maximum stress developed in the flat plate is 235 MPa. Take Young's modulus(E) = 210 GPa and theoretical stress concentration factor
=2,
Calculate the following values:
i) Width of the plate (W2) in mm
ii) Nominal Stress in MPa
iii) Diameter of the hole (d) in mm
Hole with stress
concentration factor 2
35 mm
W2
35 mm
P
300 mm
350 mm-
250 mm
Transcribed Image Text:The stress concentration occurs whenever there is an abrupt change in the cross-section of a component or there is any discontinuity in the material. The figure given below shows a flat plate with a hole of diameter d. The plate is fixed at one end and the other end is subjected to a tensile load of P = 41 kN due to which there is a change in length of 0.4 mm. The thickness of the plate is 11 mm. The maximum stress developed in the flat plate is 235 MPa. Take Young's modulus(E) = 210 GPa and theoretical stress concentration factor =2, Calculate the following values: i) Width of the plate (W2) in mm ii) Nominal Stress in MPa iii) Diameter of the hole (d) in mm Hole with stress concentration factor 2 35 mm W2 35 mm P 300 mm 350 mm- 250 mm
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Material Properties
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Structural Analysis
Structural Analysis
Civil Engineering
ISBN:
9781337630931
Author:
KASSIMALI, Aslam.
Publisher:
Cengage,
Structural Analysis (10th Edition)
Structural Analysis (10th Edition)
Civil Engineering
ISBN:
9780134610672
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Principles of Foundation Engineering (MindTap Cou…
Principles of Foundation Engineering (MindTap Cou…
Civil Engineering
ISBN:
9781337705028
Author:
Braja M. Das, Nagaratnam Sivakugan
Publisher:
Cengage Learning
Fundamentals of Structural Analysis
Fundamentals of Structural Analysis
Civil Engineering
ISBN:
9780073398006
Author:
Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:
McGraw-Hill Education
Sustainable Energy
Sustainable Energy
Civil Engineering
ISBN:
9781337551663
Author:
DUNLAP, Richard A.
Publisher:
Cengage,
Traffic and Highway Engineering
Traffic and Highway Engineering
Civil Engineering
ISBN:
9781305156241
Author:
Garber, Nicholas J.
Publisher:
Cengage Learning