Human Anatomy & Physiology (11th Edition)
11th Edition
ISBN: 9780134580999
Author: Elaine N. Marieb, Katja N. Hoehn
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.Similar questions
- Assume that in a certain cell, the ratio of products/reactants or Keg = 809.5 (Keq is dimensionless) for the reaction Glucose + 2ATP > Glucose-1,6-diP + 2ADP, at a particular instant, the concentrations of each compound were Glucose =2.4M, ATP =11.1M, ADP -12.8M and G-6-P -28.4M. Calculate the difference (dimensionless) between Keq and the ratio of products/ractants at this instance, in this cell, to five decimal placesarrow_forwardAssume that the maximum number of ATPs is produced (38) in glycolysis. At pH 7, and in the presence of excess Mg2+, how much of the energy in one mole of glucose is stored as ATP?arrow_forwardWhich of the reactions are spontaneous (favorable)? C6H130,P + ATP → › C6H14º₁₂P2 + ADP AG = -14.2 kJ/mol L-malate + NAD+ → oxaloacetate + NADH + H+ AG = 29.7 kJ/mol glutamate + NAD+ + H₂O → NH‡ + α-ketoglutarate + NADH + H+ AG = 3.7 kcal/mol → CH2O4 + H2O AG = 3.1 kJ/mol * CąHẠO, — CH,O4 + H,O DHAP C₂H + H₂ glyceraldehyde-3-phosphate AG = 3.8 kJ/mol Rh(I) C2H6 AG-150.97 kJ/molarrow_forward
- The free energy change of each step of glycolysis is given in the table below. ∆G°’ is the free energy under standard conditions (25°C, 1M each reactant, pH 7), while ∆G is the free energy change at presumed physiological conditions. Why must no step have a positive ∆G under physiological conditions?arrow_forwardHow can you find Kcat if you are only given Vmax, Km and [E] ? I tried using Kcat=Vmax/[E] but that didn't work. How do you know if [E] is the same as [E]total, and if it isn't how do you find it from this information: The Vmax for a particular enzyme is 10 nmols/L/s. The Km for its substrate is 5 microM. If the enzyme concentration is 10 nM, what is the kcat? a.80 nmoles/L/s b.8000 nmoles/L/s c.2 nmoles/L/s d.50 nmoles/L/sarrow_forwardAn uncatalyzed reaction has keq=50. in the presence of an appropriate enzyme.the forward rate of the reaction increased by 20-fold.what is the equilibrium constant in the presence of the enzyme?arrow_forward
- To carefully prepared mitochondria were added succinate, oxidized cytochrome c, ADP, orthophosphate, and sodium cyanide. The overall balanced equation is: succinate + 2 cyt c(ox) + ADP + Pi --> fumarate + 2 cyt c(red) + ATP + H2O The standard state free energy of this system is O -10.3 kJ/mol 42.5 kJ/mol O 10.3 kJ/mol -42.5 kJ/molarrow_forwardIntramitochondrial ATP concentrations are about 5 mM, and phosphate concentration is about 10 mM. Consider that ADP is five times more abundant than AMP. a. Calculate the molar concentrations of ADP and AMP at an energy charge of 0.85. b. Calculate ∆G' for ATP hydrolysis under these conditions (∆G0' for ATP hydrolysis is -32.2 kJ/mol) The energy charge is defined as ( [ATP] + 1/2 [ADP] ) / ( [ATP] + [ADP] + [AMP] )arrow_forwardThe Nutrition Facts label on most food products shows % daily values based on a food energy requirement of 8,360 kJ (2,000 kcal) at normal resting state. a) Assuming that the efficiency of converting food energy to ATP is 50%, calculate the mass of ATP (in kg) that is harvested daily by the human body from 8,360 kJ of food energy. A total of 30.5 kJ of energy is needed to synthesize one mole of ATP under standard conditions. The molar mass of ATP is 505 g/mol. b) For an average 68-kg (150 lbs.) human adult, calculate the % mass of extracted ATP (from your answer in 2a) relative to body weight.arrow_forward
- a newly identified bacterium called Nomore biochem is unable to synthesize ubiquinone. A mobile electron carrier called CXC3 is used as a substitute. From the information provided in the table, calculate delta G' and Keq value at 298K for the redox reaction that occurs in the Nomore Biochem electron transport chain. (constants: R=8.3 J/degree x mol, F= 96.1 kJ/v x mol Half Reactions E' (V) ubiquinone + 2e- + 2H+--> Ubiquinol + H2 0.045 NAD+ + 2e- + 2H+ --> NADH + H+ -0.320 CXC3 + 2e- + 2H+ --> CXC3H2 -0.450 explain the impact that using CXC3 instead of ubiquinone will have on ATP production in the cell. How might the cell adapt to this situation?arrow_forwardTwo reactions are shown below. These reactions are directly coupled in cells by an enzyme called hexokinase, which is a key enzyme in glycolysis. It is generally the case that reactions that are directly coupled by enzymes share some common reactants. What is the net reaction when these two reactions are combined? Glucose + Inorganic Phosphate + ATP + Water → Glucose 6-phosphate + ADP Glucose + ATP + Water → Glucose 6-phosphate + ADP + Inorganic Phosphate Glucose + ATP → Glucose 6-phosphate + Inorganic Phosphate Glucose + ATP → Glucose 6-phosphate + ADParrow_forwardConsider the fructose-1,6-bisphosphatase reaction. Calculate the free energy change if the ratio of the concentrations of the products to the concentrations of the reactants is 23.7, and the temperature is 37.0 °C? AG" for the reaction is -16.7 kJ/mol. The constant R = 8.3145 J/(mol-K) AG= Number kJ/molarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Human Anatomy & Physiology (11th Edition)BiologyISBN:9780134580999Author:Elaine N. Marieb, Katja N. HoehnPublisher:PEARSONBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxAnatomy & PhysiologyBiologyISBN:9781259398629Author:McKinley, Michael P., O'loughlin, Valerie Dean, Bidle, Theresa StouterPublisher:Mcgraw Hill Education,
- Molecular Biology of the Cell (Sixth Edition)BiologyISBN:9780815344322Author:Bruce Alberts, Alexander D. Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter WalterPublisher:W. W. Norton & CompanyLaboratory Manual For Human Anatomy & PhysiologyBiologyISBN:9781260159363Author:Martin, Terry R., Prentice-craver, CynthiaPublisher:McGraw-Hill Publishing Co.Inquiry Into Life (16th Edition)BiologyISBN:9781260231700Author:Sylvia S. Mader, Michael WindelspechtPublisher:McGraw Hill Education
Human Anatomy & Physiology (11th Edition)
Biology
ISBN:9780134580999
Author:Elaine N. Marieb, Katja N. Hoehn
Publisher:PEARSON
Biology 2e
Biology
ISBN:9781947172517
Author:Matthew Douglas, Jung Choi, Mary Ann Clark
Publisher:OpenStax
Anatomy & Physiology
Biology
ISBN:9781259398629
Author:McKinley, Michael P., O'loughlin, Valerie Dean, Bidle, Theresa Stouter
Publisher:Mcgraw Hill Education,
Molecular Biology of the Cell (Sixth Edition)
Biology
ISBN:9780815344322
Author:Bruce Alberts, Alexander D. Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter Walter
Publisher:W. W. Norton & Company
Laboratory Manual For Human Anatomy & Physiology
Biology
ISBN:9781260159363
Author:Martin, Terry R., Prentice-craver, Cynthia
Publisher:McGraw-Hill Publishing Co.
Inquiry Into Life (16th Edition)
Biology
ISBN:9781260231700
Author:Sylvia S. Mader, Michael Windelspecht
Publisher:McGraw Hill Education