College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Topic Video
Question
thumb_up100%
The speed of an object moving through a viscous fluid is given by v(t)=A⋅e^(−b⋅t).
(a) If the numerical value of A (in SI units) is 3.20 and the numerical value of b (in SI units) is 1.31, then what is the initial acceleration of the particle, at time t=0?
(b) How far does the particle move in the first 2.00s?
You may ignore gravity. The particle has the same density as the fluid.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A space probe on the surface of Mars sends a radio signal back to the Earth, a distance of 7.27 ✕ 107 km. Radio waves travel at the speed of light (3.00 ✕ 108 m/s). How many seconds does it take for the signal to reach the Earth?arrow_forwardAn object's position as a function of time in one dimension is given by the expression; 3.89t2 + 2.22t + 7.48 where are constants have proper SI Units. What is the object's average velocity between the times t = 3.16 s and t = 8.38 s?arrow_forwardNerve impulses in a human body travel at a speed of about 100 m/s. Suppose a person accidentally steps barefoot on a pebble. About how much time does it take the nerve impulse to travel from the foot to the brain (in s)? Assume the person is 1.60 m tall and the nerve impulse travels at uniform speed.arrow_forward
- Please answer the first three parts (a, b, c)arrow_forwardAn object is travelling in 1-dimension (i.e. along the x- axis) with a velocity described by the equation: v(t)=v0+1/6st^3 , where s and v0 are constants. The object’s position, and acceleration at time t = 0 are given by d0, and a0 respectively. In terms of the variables given, what is the average acceleration of the object over the interval from 0 to 2 seconds.arrow_forwardAn equation describing displacement (in meters) as a function of time (in seconds) of a rocket propelled motorcycle moving up a hill is given by: x(t) = 13.5t – 0.5t³ + 7 Where 0arrow_forwardNerve impulses in a human body travel at a speed of about 100 m/s. Suppose a woman accidentally steps barefoot on a thumbtack. About how much time does it take the nerve impulse to travel from the foot to the brain (in s)? Assume the woman is 1.80 m tall and the nerve impulse travels at uniform speed.arrow_forwardA particle moves so that its position (in meters) as a function of time (in seconds) is r = î + 5t2 j + 5t k. (Use the following as necessary: t.) (a) Write an expression for its velocity as a function of time. V = m/s (b) Write an expression for its acceleration as a function of time. a = m/s?arrow_forwardAn object's position as a function of time in one dimension is given by the expression; 3.89t2 + 2.22t + 7.48 where are constants have proper SI Units. What is the object's average velocity between the times t = 3.16 s and t = 8.38 s? with everything in 3 sig figsarrow_forwardA jeep travels a distance d=22.1m in the positive x direction in a time t1=20.2s, at which point the jeep brakes, coming to rest in t2=7.38s. 1. What was the jeep's instantaneous velocity in the horizontal direction, in meters per second, when it began braking? 2. Using the result from question 1, what was the jeep's horizontal component of acceleration, in meters per squared second, during the braking period?arrow_forwardA proton moves along the x axis according to the equation x = 54 t+ 11 t2, where x is in meters and t is in seconds. Calculate (a) the average velocity of the proton during the first 3.0 s of its motion, (b) the instantaneous velocity of the proton at t = 3.0 s, and (c) the instantaneous acceleration of the proton at t = 3.0 s. (a) Number i Units (b) Number i Units (c) Number i Unitsarrow_forwardI don't understand how to do this problem. I tried taking the derivative, but that didn't give me the correct answer. I would really appreciate the help. When a 1984 Alpha Romeo Spider sports car accelerates in the x-direction at the maximum possible rate,its motion during the first 20. seconds is extremely well modeled by the simple equation vx2=(60 m2/s3)t, where t is time in seconds and vx is in m/s. In other words, the squareof teh car's velocity increases linearly with time. What is its acceleration after 3s, assuming that the car starts from rest at t=0 s?arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON