The Polish mathematician Wacław Sierpiński described the pattern in 1915, but it has appeared in Italian art since the 13th century. Though the Sierpinski triangle looks complex, it can be generated with a short recursive function. Your main task is to write a recursive function sierpinski() that plots a Sierpinski triangle of order n to standard drawing. Think recursively: sierpinski() should draw one filled equilateral triangle (pointed downwards) and then call itself recursively three times (with an appropriate stopping condition). It should draw 1 filled triangle for n = 1; 4 filled triangles for n = 2; and 13 filled triangles for n = 3; and so forth. API specification. When writing your program, exercise modular design by organizing it into four functions, as specified in the following API: public class Sierpinski { // Height of an equilateral triangle whose sides are of the specified length. public static double height(double length) // Draws a filled equilateral triangle whose bottom vertex is (x, y) // of the specified side length. public static void filledTriangle(double x, double y, double length) // Draws a Sierpinski triangle of order n, such that the largest filled // triangle has bottom vertex (x, y) and sides of the specified length. public static void sierpinski(int n, double x, double y, double length) // Takes an integer command-line argument n; // draws the outline of an equilateral triangle (pointed upwards) of length 1; // whose bottom-left vertex is (0, 0) and bottom-right vertex is (1, 0); and // draws a Sierpinski triangle of order n that fits snugly inside the outline. public static void main(String[] args)

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question
100%
 
The Polish mathematician Wacław Sierpiński described the pattern in 1915, but it has appeared in Italian art since the 13th century. Though the Sierpinski triangle looks complex, it can be generated with a short recursive function. Your main task is to write a recursive function sierpinski() that plots a Sierpinski triangle of order n to standard drawing. Think recursively: sierpinski() should draw one filled equilateral triangle (pointed downwards) and then call itself recursively three times (with an appropriate stopping condition). It should draw 1 filled triangle for n = 1; 4 filled triangles for n = 2; and 13 filled triangles for n = 3; and so forth.

API specification. When writing your program, exercise modular design by organizing it into four functions, as specified in the following API:

public class Sierpinski {
// Height of an equilateral triangle whose sides are of the specified length. public static double height(double length)
// Draws a filled equilateral triangle whose bottom vertex is (x, y)
// of the specified side length.
public static void filledTriangle(double x, double y, double length)
// Draws a Sierpinski triangle of order n, such that the largest filled
// triangle has bottom vertex (x, y) and sides of the specified length.
public static void sierpinski(int n, double x, double y, double length)
// Takes an integer command-line argument n;
// draws the outline of an equilateral triangle (pointed upwards) of length 1; // whose bottom-left vertex is (0, 0) and bottom-right vertex is (1, 0); and
// draws a Sierpinski triangle of order n that fits snugly inside the outline. public static void main(String[] args) }
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Knowledge Booster
Fibonacci algorithm
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education