Question
The pendulum apparatus in the video has a total mass of 578 grams. The pendulum rod has a small mass of 20 grams so you can treat all the mass of the pendulum as if it were hanging at the end which is called the “bob”. The mass of the rod should be taken into account in determining the center of mass of the apparatus which is 71.3 cm (not the length of the pendulum). A marble which has a mass of 10 g is fired at the pendulum bob which has clay on it which allows the marble to stick to it.
Derive a formula for the velocity of the marble/bob system (vmb) as a function of r, g and ? using the conservation of energy and write it below.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Similar questions
- A 0.800 kg ornament is hanging by a 1.50 m wire when the ornament is suddenly hit by a 0.200 kg missile traveling horizontally at 12.0 m/s. The missile embeds itself in the ornament during the collision. What is the tension in the wire immediately after the collision?arrow_forwardAn 4.5 kg bowling ball rolls with a velocity of 3.4 m/s and strikes a stationary 5.0 kg bowling ball. The first ball stops after the collision. How fast does the second bowling ball roll away after the collision?arrow_forwardIn a ballistic pendulum experiment, a small marble is fired into a cup attached to the end of a pendulum. If the mass of the marble is 0.0255 kg and the mass of the pendulum is 0.250 kg, how high h will the pendulum swing if the marble has an initial speed of 5.85 m/s? Assume that the mass of the pendulum is concentrated at its end so that linear momentum is conserved during this collision. h = * TOOLS x10arrow_forward
- The mass of a regulation tennis ball is 57.0 g (although it can vary slightly), and tests have shown that the ball is in contact with the tennis racket for 30 ms. (This number can also vary, depending on the racket and swing.) We assume a 59.0 g ball and a 26.0 ms contact time in this problem. In the 2011 Davis Cup competition, Ivo Karlovic made one of the fastest recorded serves in history, which was clocked at 156 mi//h (70 m/s). Part A: What impulse did Karlovic exert on the tennis ball in his record serve? Take the +x direction to be along the final direction of motion of the ball. Part B: What average force did Karlovic exert on the tennis ball in his record serve? Part C: If his opponent returned this serve with a speed of 55.0 m/s, what impulse did his opponent exert on the ball, assuming purely horizontal motion? Take the +x direction to be in the direction the ball is traveling before it is hit by the opponent. Part D: If his opponent returned this serve with a speed of 55.0…arrow_forwardA knife thrower throws a knife toward a 300 g target that is sliding in her direction at a speed of 2.30 m/s on a horizontal frictionless surface. She throws a 22.5 g knife at the target with a speed of 38.0 m/s. The target is stopped by the impact and the knife passes through the target. Determine the speed of the knife (in m/s) after passing through the target.arrow_forwardA 0.01 kg bullet traveling horizontally at the speed of sound (343 m/s) embeds itself into the Kevlar vest of a stationary 100 kg physics professor. The bullet and the professor then move as one. What is the speed of the bullet/professor system after the collision?arrow_forward
- In walking the body goes through both a breaking impulse and a propulsion impulse. The breaking phase lasts .3 seconds and the propulsion phase lasts .33 seconds. The body goes through a decrease of the vertical velocity of .1 m/s as they come into the ground during the breaking impulse and an increase in the vertical velocity of .4 m/s during the propulsion. The individual has a weight of 700 newtons. What is the acceleration horizontally for both the breaking impulse and the propulsive impulse if the coefficient of friction is .32?arrow_forwardThe pendulum apparatus in the video has a total mass of 578 grams. The pendulum rod has a small mass of 20 grams so you can treat all the mass of the pendulum as if it were hanging at the end which is called the “bob”. The mass of the rod should be taken into account in determining the center of mass of the apparatus which is 71.3 cm (not the length of the pendulum). A marble which hass a mass of 10 g is fired at the pendulum bob which has clay on it which allows the marble to stick to it. Derive a formula for measuring the velocity of the marble (vm) as a function of the mass of the marble mm, the mass of the marble/bob mmb and the velocity of the marble and bob vmb using the conservation of momentum.arrow_forwardA car, with a mass of 1240 kg, is moving towards an intersection at a velocity of 26.6 m/s towards the South. At the intersection, it collides with a truck that has a mass of 1580 kg and is moving with a velocity of 14.0 m/s towards the West. When they collide, the two vehicles stick together. 15. The magnitude of the final velocity for the car and truck is Answer to 3 significant digits. m/s. (Record your answer in the numerical-response section below.) Your answer:arrow_forward
- A 1500 kg aircraft going 35 m/s collides with a 2000 kg aircraft that is parked and they stick together after the collision and are going 15 m/s after the collision. If they skid for 123.9 m before stopping, how long (in seconds) did they skid?arrow_forwardIn a ballistic pendulum experiment, a small marble is fired into a cup attached to the end of a pendulum. If the mass of the marble is 0.0235 kg and the mass of the pendulum is 0.250 kg, how high h will the pendulum swing if the marble has an initial speed of 5.65 m/s? Assume that the mass of the pendulum is concentrated at its end so that linear momentum is conserved during this collision. h = marrow_forwardThe figure below shows a bullet of mass 15 g traveling horizontally towards the east with speed 250 m/s, which strikes a block of mass 1.5 kg that is initially at rest on a frictionless table. After striking the block, the bullet is embedded in the block and the block and the bullet move together as one unit. What is the energy loss in the system due to this collisionarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios