College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
The membrane surrounding a living cell consists of an inner and an outer wall that are separated by a small space. Assume that the membrane acts like a parallel plate capacitor in which the effective charge density on the inner and outer walls has a magnitude of 7.1 3 1026 C/m2. (a) What is the magnitude of the electric field within the cell membrane? (b) Find the magnitude of the electric force that would be exerted on a potassium ion (K1; charge 5 1e) placed inside the membrane.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In a typical television or in an older computer picture tube (CRT), the electrons that strike the screen to form an image are accelerated between two charged plates that have a potential difference of 2.5×104 V. The plates are separated by a distance of 1.3 cm. Assuming that there is a uniform electric field between the plates, calculate the strength of the field.arrow_forwardA charged conducting sphere with capacitance, C = 26.7 pF, produces an electric field that points radially outward. At a distance, d = 61.2 cm, from the center of the sphere, the strength of the electric field is E = 71.3 kV/m. (a) What is the radius of the charged sphere? R = m (b) Find the sphere's surface charge density. μC/m² J =arrow_forwardThe membrane surrounding a living cell consists of an inner and an outer wall that are separated by a small space. Assumne that the membrane acts like a parallel plate capacitor in which the effective charge density on the inner and outer walls has a magnitude of 7.1x 10-6 C/m2.(a) What is the magnitude of the electric field within the cell membrane? (b) Find the magnitude of the electric force that would be exerted on a potassium ion (K*; charge = +e) placed inside the membrane. (a) Number Units (b) Number Unitsarrow_forward
- A uniform electric field 3.41E3 N/C is applied in a cubic box with each side being 2.23 m long. What is the energy stored by the electric field in the box (in J)?arrow_forwardTwo parallel, flat, conducting plates with equal but opposite charges are separated by a uniform layer of insulating material with a dielectric constant of 7.1 and a thickness of 1.7mmmm. The electric field in the dielectric material is 2.22MV/mMV/m. What is the magnitude, in microcoulombs per squared meter, of the surface charge density on the conducting plates? What is the magnitude, in microcoulombs per squared meter, of the surface charge density on the conducting plates?arrow_forwardAn electric dipole composed of two charges of magnitude 7.01 μC separated by 99.1 cm is in a uniform 5.03 x 106 N/C electric field. How much energy (in J) is required to change the dipole's orientation from parallel to antiparallel to the field?arrow_forward
- The membrane surrounding a living cell consists of an inner and an outer wall that are separated by a small space. Assume that the membrane acts like a parallel plate capacitor in which the effective charge density on the inner and outer walls has a magnitude of 6.8 × 10-6 C/m2. (a) What is the magnitude of the electric field within the cell membrane? (b) Find the magnitude of the electric force that would be exerted on a potassium ion (K+; charge = +e) placed inside the membrane.arrow_forwardPlease Help ASAP!!!!arrow_forwardA proton is initially at rest. After some time, a uniform electric field is turned on and the proton accelerates. The magnitude of the electric field is 1.81 105 N/C. (a) What is the speed of the proton after it has traveled 7.00 cm? (b) What is the speed of the proton after it has traveled 70.0 cm?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON