
Chemistry
10th Edition
ISBN: 9781305957404
Author: Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question

Transcribed Image Text:The heater used in a 4.33 m x 3.60 m x 2.86 m dorm room uses the combustion of natural gas (primarily methane gas) to
produce the heat required to increase the temperature of the air in the dorm room. Assuming that all of the energy produced in
the reaction goes towards heating only the air in the dorm room, calculate the mass of methane required to increase the
temperature of the air by 5.79 °C. AsSsume that the specific heat of air is 30.0 J/K-mol and that 1.00 mol of air occupies 22.4 L at
all temperatures. Enthalpy of formation values can be found in this table. Assume gaseous water is produced in the combustion
of methane.
mass of methane:
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Measurements show that the energy of a mixture of gaseous reactants increases by 396. kJ during a certain chemical reaction, which is carried out at a constant pressure. Furthermore, by carefully monitoring the volume change it is determined that 122. kJ of work is done on the mixture during the reaction. Calculate the change in enthalpy of the gas mixture during the reaction. Be sure your answer has the correct number of significant digits. O exothermic Is the reaction exothermic or endothermic? O endothermicarrow_forwardA 60.0 g sample of iron is put into a calorimeter (see sketch at right) that contains 300.0 g of water. The iron sample starts off at 98.3 °C and the temperature of the water starts off at 22.0 °C. When the temperature of the water stops changing it's 24.1 °C. The pressure remains constant at 1 atm. Calculate the specific heat capacity of iron according to this experiment. Be sure your answer is rounded to the correct number of significant digits. 0 J g. °C x10 X thermometer insulated container water sample. a calorimeterarrow_forwardMeasurements show that the energy of a mixture of gaseous reactants increases by 301. kJ during a certain chemical reaction, which is carried out at a constant pressure. Furthermore, by carefully monitoring the volume change it is determined that – 104. kJ of work is done on the mixture during the reaction. Calculate the change in enthalpy of the gas mixture during the reaction. Be sure your answer has the correct number of significant digits. O exothermic ? Is the reaction exothermic or endothermic? O endothermicarrow_forward
- A 55.0 g sample of brass is put into a calorimeter (see sketch at right) that contains 100.0 g of water. The brass sample starts off at 86.7 °C and the temperature of the water starts off at 23.0 °C. When the temperature of the water stops changing it's 26.5 °C. The pressure remains constant at 1 atm. Calculate the specific heat capacity of brass according to this experiment. Be sure your answer is rounded to the correct number of significant digits. J 0- g-°C 0 x10 X thermometer. insulated container water sample a calorimeterarrow_forwardA bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 1.4710 g sample of maleic acid (C4H4O4) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1159 g of water. During the combustion the temperature increases from 22.46 to 25.59 °C. The heat capacity of the calorimeter, not including the surrounding water, was determined in a previous experiment to be 852.2 J/°C. Assuming that no energy is lost to the surroundings, calculate the molar heat of combustion of maleic acid based on these data. Assuming that no energy is lost to the surroundings, what is the molar heat of combustion of maleic acid, based on these data? (in kJ/mol). C4H4O4(s) + 3O2(g) → 2 H2O(l) + 4 CO2(g) + Energyarrow_forwardMeasurements show that the energy of a mixture of gaseous reactants decreases by 373. kJ during a certain chemical reaction, which is carried out at a constant pressure. Furthermore, by carefully monitoring the volume change it is determined that 136. kJ of work is done on the mixture during the reaction. Calculate the change in enthalpy of the gas mixture during the reaction. Round your answer to 3 x10 significant digits. exothermic Is the reaction exothermic or endothermic? endothermicarrow_forward
- A 56.5 g sample of iron is put into a calorimeter (see sketch at right) that contains 300.0 g of water. The iron sample starts off at 86.7 °C and the temperature of the water starts off at 21.0 °C. When the temperature of the water stops changing it's 22.8 °C. The pressure remains constant at 1 atm. Calculate the specific heat capacity of iron according to this experiment. Be sure your answer is rounded to 2 significant digits. J 0₂-C x10 x thermometer insulated container water sample a calorimeterarrow_forwardThe molar heat of solution of a substance is found to be +21.38 kJ/mol. The addition of 0.100 mol of this substance to 1.000L of water initially at 40.0 degrees celsius results in a temperature decrease. Assume the specific heat of the resulting solution to be equal to that of pure water. Find the final temperature of the solution (Also assume that the heat capacity of the calorimeter is negligible).arrow_forwardA bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 0.3215 g sample of phenanthrene (C14H10) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.162×10 g of water. During the combustion the temperature increases from 25.15 to 27.48 °C. The heat capacity of water is 4.184 J glc-!. The heat capacity of the calorimeter was determined in a previous experiment to be 769.3 J/°C. Assuming that no energy is lost to the surroundings, calculate the molar heat of combustion of phenanthrene based on these data. C14H10(s) + (33/2) O,(g) – → 5 H,O(1) + 14 CO2(g) + Energy Molar Heat of Combustion = kJ/molarrow_forward
- A student is attempting to determine the heat capacity of a Styrofoam cup calorimeter by pouring hot water into a Styrofoam cup containing cold water. The student determined the mass of the cold water to be 21.2455 g and its initial temperature to be 20.36 °C. The mass of the hot water was 24.2646 g and its initial temperature as 34.54 °C. The final temperature of the water after mixing was determined to be 24.57°C. The specific heat capacity of the water is 4.184 J/(g•°C). What is the heat capacity of the Styrofoam cup calorimeter? Assume the temperature of the calorimeter is the same temperature as the cold water. 4.184 J/°C 132.5 J/°Carrow_forwardTo treat a burn on his hand, a person decides to place an ice cube on the burned skin. The mass of the ice cube is 15.2 g, and its initial temperature is −13.9 ∘C. The water resulting from the melted ice reaches the temperature of his skin, 29.9 ∘C. How much heat is absorbed by the ice cube and resulting water? Assume that all of the water remains in the hand. Constants for water can be found in this table. Enthalpy of fusion 333.6 J/g 6010. J/mol Enthalpy of vaporization 2257 J/g 40660 J/mol Specific heat of solid H 2 O (ice) 2.087 J/(g·°C) * 37.60 J/(mol·°C) * Specific heat of liquid H 2 O (water) 4.184 J/(g·°C) * 75.37 J/(mol·°C) * Specific heat of gaseous H 2 O (steam) 2.000 J/(g·°C) * 36.03 J/(mol·°C) *arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning

Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning

Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY