College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
thumb_up100%
The engine of a model rocket accelerates the rocket vertically upward for 2.0 s as follows: At t = 0, the rocket's speed is zero; at t = 1.0 s, its speed is 5.0 m/s; and at t = 2.0 s, its speed is 22 m/s. Plot a velocity vs. time graph for this motion, and use the graph to determine each of the following.
(a) the rocket's average acceleration during the 2.0 s interval
m/s2
(b) the instantaneous acceleration of the rocket at t = 1.5 s
m/s2
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A car starts from rest. It accelerates at constant acceleration for 5.0 seconds during which the car covers a distance of 125 m. After that the car continues at that speed for 22 seconds, after which the car slows down at a constant deceleration of – 4.5 m/sec2 until coming to a complete stop. Draw a v vs t, graph, label all the relevant data, and use the graphical method to determine total distance traveled.arrow_forwardYou qualitatively analyzed the motion of a van earlier. Now, using the example of the ball thrown into the air, you can do a more detailed analysis of the van's motion. The table shown here includes the time and position data, with one worked example for finding acceleration. Time Position Velocity Ad Acceleration t(s) (m/s) Ar (m/s") 0.0 0.0 6.0 2.0 12 +3.0 12 4.0 36 Sample Calculation Notice that the velocity that will be plotted at t = 1.0 s is the average velocity between t = 0.0 s and t 2.0 s. The velocity that will be plotted at t 3.0 s is the average velocity between t = 2.0 s and 4.0 s. The acceleration that will be plotted at t= 2.0 s is the average acceleration between t = 1.0 s and t = 3.0s. 6.0 48 8.0 96 10.0 142 12.0 190 14.0 226 16.0 250 Adgd-d 12 m-0.0 m 2.0 s-0.0 s V = 18.0 262 Alo2 t2-lo 12 m 2.0 s %3D Analyze and Conclude 1. How well do the average and instantaneous velocities that you calculated agree with = 6.0 m each other? 36 m-12 m V= Afz4 %3D %3D 2 Separate the…arrow_forwardYesterday you walked 20 meters to the right from your house to the bus stop, which took you 20 seconds. You waited at the bus stop for 1 minute before realizing you forgot your Mathematics homework at home. You ran back to your house in 5 seconds. It took you 10 seconds to find your homework, and then you ran back to the bus stop in 5 seconds just in time to catch the bus. What was your average velocity for the entire period of motion?arrow_forward
- Position, Velocity, and Acceleration 1. A position-time graph for a particle moving along the x axis is shown in the figure. (a) Find the average velocity in the time interval t = 1.50 s to t = 4s (b) Find the average velocity in the time interval t = 1.00 s to t = 6.00s (c) Determine the instantaneous velocity at t = 2.00 s by measuring the slope of the tangent line shown in the graph. (d) At what value of t is the velocity zero x (m) -t (s) 5 -12 -10 -8 -6 4 2- 0. 9 3 6arrow_forwardPosition, Velocity, and Acceleration 1. A position-time graph for a particle moving along the x axis is shown in the figure. (a) Find the average velocity in the time interval t= 1.50 s to t= 4s (b) Find the average velocity in the time interval t = 1.00 s to t = 6.00s (c) Determine the instantaneous velocity at t=2.00 s by measuring the slope of the tangent line shown in the graph. (d) At what value of t is the velocity zero x (m). -12 -1아 -2 2. _3__4_5_6. 4.arrow_forwardThe following graph depicts the velocity of someone playing tag over a short period of time. Use this velocity graph to answer the following questions. The person's maximum magnitude for velocity is 4.5 m/s in both the positive and negative directions. A is at time point 3 seconds, B is at time point 4.5 seconds, C is at time point 5.5 seconds, D is at time point 7 seconds, E is at 8 seconds, F is at 9 seconds and G is at 10 seconds. What is the acceleration in meters/second2 (m/s2) at the 2 second mark of playing tag? What is the acceleration in meters/second2 (m/s2) at the 5 second mark? What is the velocity in meters/second (m/s) at the 5 second mark? What is the acceleration in meters/second2 (m/s2) at the 6.5 second mark? What is the acceleration in meters/second2 (m/s2) at the 8.5 second mark? What is the velocity in meters/second (m/s) at the 9.5 second mark?arrow_forward
- NOTE: USE V, =initial velocity a = acceleration x= distance or displacement V= final velocity t= time 1. A car travels at 120 km/h for 2 h, at 80 km/h for the next 2 h, and finally at 100 km/h for 1 h. What is the car's average velocity for the entire journey?arrow_forwardThe graph below shows the velocity versus time for a bullet as it is fired from a gun, travels a short distance, and enters a block of wood. Compute the accele a, b, and c. (Indicate the direction with the sign of your answer. Assume the bullet's initial motion is in the positive direction.) v (m/s) 800 700 600 500 400 300 200 100 a b t (S) 0.001 0.002 0.003 Time a: Estimate the rise and run. rise m/s run Compute the acceleration at time a. (Use your estimates.) m/s2 Time b: Time b: Estimate the rise and run. rise m/s run Compute the acceleration at time b. (Use your estimates.) m/s? Time c: Estimate the rise and run. rise m/s run Compute the acceleration at time c. (Use your estimates.) m/s2arrow_forwardAs a training exercise, a soccer player must run the length of the soccer field (leg 1), then turn around and run back to her starting point (leg 2) without stopping. If the length of the soccer field is L meters, and she runs the leg 1 in t 1 seconds, then turns around and runs leg 2 in t_2 seconds, find the following: (Write your answers using the symbols as they are written in the question.) a) Her average velocity during leg 1 was L/t'1 m-s 1, b) Her average velocity during leg 2 was L/t 2 m-s1. c) Her average velocity over the entire exercise was m-s 1. d) Her average speed during the entire exercise was 2L/t_1+t_2 m-s1. CO3, W31, W32 Ask Dr. Hébert for help.arrow_forward
- A certain freely falling object, released from rest, requires 1.40 s to travel the last 24.5 m before it hits the ground. (a) Find the velocity of the object when it is 24.5 m above the ground. (Indicate the direction with the sign of your answer. Let the positive direction be upward.) Your response differs from the correct answer by more than 100%. m/s (b) Find the total distance the object travels during the fall. marrow_forwardA motorcycle begins at rest at t0 = 0 seconds. The motorcycle starts moving, and eventually covers a distance d = 712 m, in a time tf = 163 s. In a coordinate system with north being the positive x-direction, the motorcycle's motion is in the northern direction (see figure). If the motorcycle's final velocity at tf was 12 m/s, what was the motorcycle's average acceleration in the northern direction, aavg,N, during this period in m/s2?arrow_forwardA certain freely falling object, released from rest, requires 1.35 s to travel the last 27.0 m before it hits the ground. (a) Find the velocity of the object when it is 27.0 m above the ground. (Indicate the direction with the sign of your answer. Let the positive direction be upward.) Your response differs from the correct answer by more than 10%. Double check your calculations. m/s (b) Find the total distance the object travels during the fall. marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON