College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A student holds a ball 1.55 meters above the ground and drops it. Her friend uses a stopwatch and measures a time of 0.57 seconds for the ball to hit the ground.
Since the value for g obtained from the data is inaccurate, one of the measurements must have been incorrect. Assuming the time was exactly accurate, from what height was the ball actually dropped?
Expert Solution
arrow_forward
Step 1
We have been given that
h = 1.55 m
t = 0.57
Using these values, the value of acceleration due to gravity is not being correctly determined.
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- For the following data. Time (s) Distance (m) 1 22 2 43 3 64 4 87 5 101 6 129 Plot this equation: (d = v t), where v is velocity. Determine the slope of the graph. What the physical quantity does the slope represent? Determine the y-intercept of the graph.arrow_forwardYou are observing the poles along the side of the road. You have already stopped and measured the distance between adjacent poles as 33.1 m. You are now driving again and have activated your smartphone stopwatch. You start the stopwatch at t = 0 as you pass pole #1. At pole #2, the stopwatch reads 11.8 s. At pole #3, the stopwatch reads 30.7 s. Your friend tells you that he was pressing the brake and slowing down the car uniformly during the entire time interval from pole #1 to pole #3. (Assume you are driving in the positive direction when t = 0.) (a) What was the acceleration (in m/s²) of the car between poles #1 and #3? (Indicate the direction with the sign of your answer.) m/s² (b) What was the velocity (in m/s) of the car at pole #1? (Indicate the direction with the sign of your answer.) m/s (c) If the motion of the car continues as described, what is the number of the last pole passed before the car comes to rest? O pole #1 pole #2 pole #3 pole #4 O pole #5arrow_forwardAn insect takes 8.03 minutes to walk 19.9 m toward the south along a deserted highway. A driver stops and picks up the insect. The driver takes the insect to a town 1.62 km to the north with an average speed of 15.6 m/s. What is the magnitude of the average velocity of the insect for its entire journey? Express your answer to 3 significant figures in meters/second.arrow_forward
- The car travels around the circular track having a radius of r = 300 m such that when it is at point A it has a velocity of 8 m/s, which is increasing at the rate of v = (0.08t) m/s², where t is in seconds. (Figure 1) Figure A X 1 of 1 Part A Determine the magnitude of the velocity when it has traveled one-third the way around the track. Express your answer to three significant figures and include the appropriate units. V = Submit Part B Value a = μA 0 Submit Request Answer Determine the magnitude of the acceleration when it has traveled one-third the way around the track. Express your answer to three significant figures and include the appropriate units. O μÀ Value Units Request Answer ? Units ?arrow_forwardPlease answer in 30 min. I will upvote.arrow_forwardIf you make multiple measurements of your height, you are likely to find that the results vary by nearly half an inch in either direction due to measurement error and actual variations in height. You are slightly shorter in the evening, after gravity has compressed and reshaped your spine over the course of a day. One measurement of a man's height is 6 feet and 1 inch. Express his height in meters, using the appropriate number of significant figures.arrow_forward
- An object was observed to have velocity v1 in m/s at time t1 seconds and later velocity v2 in m/s at time t2 seconds: v1=0; t1=0.6; v2=14; t2=4.0 Units are m/s and s. Find the average acceleration of the object in m/s/s. Please include 3 sig. figs. in your answer.arrow_forwardIf an average-size man jumps from an airplane with an open parachute, his downward velocity t seconds into the fall is v(t) = 20(10.2) feet per second. (a) Use functional notation to express the velocity 3 seconds into the fall. Calculate it. ft per sec (b) Explain how the velocity increases with time. Include in your explanation the average rate of change from the beginning of the fall to the end of the first second and the average rate of " change from the fourth second to the fifth second of the fall. This answer has not been graded yet. (c)-Find the terminal velocity. ft per sec (d) Compare the time it takes to reach 99% of terminal velocity here with the 25 seconds it took a skydiver with his parachute closed to reach 99% of terminal velocity in Example 2.1. On the basis of the information we have, which would you expect to reach 99% of terminal velocity first, O feather feather or a cannonball? O cannonball Need Help? Read Itarrow_forward6.8 The distance a freely falling object travels is where g = acceleration due to gravity, 9.8 m/s? t = time in seconds x = distance traveled in meters. If you have taken calculus, you know that we can find the velocity of the object by taking the derivative of the preceding equation. That is, dx = v = dt = gt We can find the acceleration by taking the derivative again: dv = a = g dt (a) Create a function called free_fall with a single input vector t that returns values for distance x, velocity v, and acceleration g. (b) Test your function with a time vector that ranges from 0 to 20 seconds, 6.9 Create a functionarrow_forward
- An engineer is testing how quickly a car accelerates from rest. The velocity V is measured in miles per hour, as a function of time t, in seconds, since the car is at rest. See the table below. What is the slope for the linear function modeling velocity as a function of time, V=, and what would the formula be for the velocity at time 0, V(0) Time (t) Velocity (V) 2.0 28.9 2.5 35.0 3.0 41.1 3.5 47.2arrow_forwardYou attach a meter stick to an oak tree, such that the top of the meter stick is 2.672.67 meters above the ground. Later, an acorn falls from somewhere higher up in the tree. If the acorn takes 0.1860.186 seconds to pass the length of the meter stick, how high ℎ0h0 above the ground was the acorn before it fell, assuming that the acorn did not run into any branches or leaves on the way down?arrow_forwardThe acceleration of a particle is a constant. At t=0 the velocity of the particle is (14.91 + 18.4ĵ) m/s. At t = 4.6 s the velocity is 11.4j m/s. (Use the following as necessary: t. Do not include units in your answers.) (a) What is the particle's acceleration (in m/s²)? = î+ 18.4 v(t) = (b) How do the position (in m) and velocity (in m/s) vary with time? Assume the particle is initially at the origin. r(t) = î+ X Î- i) m/s m/sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON