The electronic structure of one-dimensional chain of sodium (Na) atoms can be approximately described by the particle-in-a-box model. The energy of each state can be calculated using En=(n^2h^2)/8mL^2, ? = 1, 2, 3, … where L is the length of the 1D chain. Assuming L = a0(N – 1), where N is the number of Na atoms and a0 = 0.360 nm is the internuclear distance. a) Determine the energy gap between the highest occupied energy level and the lowest unoccupied energy level as a function of N. Assume that N is an even number that is large enough (Hint: assume that each Na only contributes 1 electron to the problem and consider the information in Question 1c above.). b) Thermal energy at room temperature is 4.15 × 10–21 J. Calculate the minimum number of Na atoms required so that the energy gap is smaller than the thermal energy.

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
Question

Part B

The electronic structure of one-dimensional chain of sodium (Na) atoms can be approximately described by the particle-in-a-box model. The energy of each state can be calculated using En=(n^2h^2)/8mL^2, ? = 1, 2, 3, … where L is the length of the 1D chain. Assuming L = a0(N – 1), where N is the number of Na atoms and a0 = 0.360 nm is the internuclear distance.

a) Determine the energy gap between the highest occupied energy level and the lowest unoccupied energy level as a function of N. Assume that N is an even number that is large enough (Hint: assume that each Na only contributes 1 electron to the problem and consider the information in Question 1c above.).

b) Thermal energy at room temperature is 4.15 × 10–21 J. Calculate the minimum number of Na atoms required so that the energy gap is smaller than the thermal energy.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Applications of MOT and Spectroscopy to Symmetry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY