The electric potential difference AV, also called voltage, is expressed in terms of the electric field as follows AV = Edr where, a is the initial position and b is the final position. If an electric field in a region in space is defined as E= - 2Br2 where B is just a constant without an arbitrary value. What is the electric potential difference from position 0 to R? 1 AV = BR3 AV = BR3 O AV = - BR3 O AV = Br 3 O Av = BR? 2 O AV = (1– BR²)aR 1 ΔV=-을(1-BlaR3 3. O AV = -(1- B)aR³ 1 O AV = -Br3 AV =

icon
Related questions
Question

-1/3 betaRand +1/3 betaR3 are INCORRECT and NOT THE ANSWERS. Please answer correctly.

The electric potential difference AV, also called voltage, is expressed in terms of the electric field as follows
AV = -
Edr
where, a is the initial position and b is the final position.
If an electric field in a region in space is defined as
E= - 2Br?
where B is just a constant without an arbitrary value. What is the electric potential difference from position 0 to R?
AV =
BR3
1
ΔV =D BR3
O AV = - BR3
1
AV =
O Av - R
BR3
O AV = (1– BR²)aR
-글(1-BlaR3
AV =
Ο ΔV= - (1-β)αR3
1
AV =
--o
O Av = -Br?
Transcribed Image Text:The electric potential difference AV, also called voltage, is expressed in terms of the electric field as follows AV = - Edr where, a is the initial position and b is the final position. If an electric field in a region in space is defined as E= - 2Br? where B is just a constant without an arbitrary value. What is the electric potential difference from position 0 to R? AV = BR3 1 ΔV =D BR3 O AV = - BR3 1 AV = O Av - R BR3 O AV = (1– BR²)aR -글(1-BlaR3 AV = Ο ΔV= - (1-β)αR3 1 AV = --o O Av = -Br?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer