Question
Radiation has been detected from space that is characteristic of an ideal radiator at T = 2.728 K. (This radiation is a relic of the Big Bang at the beginning of the universe.) For this temperature, at what wavelength does the Planck distribution peak? In what part of the elec- tromagnetic spectrum is this wavelength?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Similar questions
- ) a) What temperature is required for a black body spectrum to peak in the X-ray band? (Assume that E = 1 keV). What is the frequency and wavelength of a 1 keV photon? b) What is one example of an astrophysical phenomenon that emits black body radiation that peaks near 1 keV? c) What temperature is required for a black body spectrum to peak in the gamma-ray band with E = 1 GeV? What is the frequency and wavelength of a 1 GeV photon? d) What is one example of an astrophysical phenomenon that emits black body radiation that peaks at 1 GeV?arrow_forwardThe work function of a tungsten surface is 5.4 eV. When the surface is illuminated by light of wavelength 175 nm, the maximum photoelectric energy is 1.7 eV. Find Planck's constant from these data.arrow_forwardWhat temperature, in °C, is a blackbody whose emission spectrum peaks at 320 nm ? T= Submit Request Answer Part B VE ΑΣΦ T= Submit What temperature, in °C, is a blackbody whose emission spectrum peaks at 4.60 m? VE ΑΣΦ P By Request Answer ? Stag °C ? °Carrow_forward
- Suppose a star with radius 8.57 × 108 m has a peak wavelength of 680 nm in the spectrum of its emitted radiation. (a) Find the energy of a photon with this wavelength. J/photon (b) What is the surface temperature of the star? K (c) At what rate is energy emitted from the star in the form of radiation? Assume the star is a blackbody (e = 1). W (d) Using the answer to part (a), estimate the rate at which photons leave the surface of the star. photons/sarrow_forwardPlanck’s constant has the value h = 6.626 × 10–34 joule-seconds (J-s), and the speed of light is c = 3 × 108 m/s. Using these values, calculate the wavelength carried by photons emitted with an energy of 1.1 × 10-19 J.arrow_forwardThe wavelength of a red spectral emission line is 670.0 nm. At what kinetic energy (in J) would an electron have that wavelength as its de Broglie wavelength?arrow_forward
- As noted in the chapter, the cosmic microwave background radiation fits the Planck equation for a blackbody at 2.7 K. (a) What is the wavelength at the maximum intensity of the spectrum of the background radiation? (b) What is the frequency of the radiation at the maximum? (c) What is the total power incident on Earth from the background radiationarrow_forwardFor light with a wavelength of 350 nm and with an intensity of /= 10-8 W/m², what is the number of photons/(m²s) in the light beam?arrow_forwardA nickel crystal’s work function is measured to be 5.22 eV at 25°C. As the temperature increases by 300°C, the work function drops by 50 meV. By how much does this shift the threshold wavelength for photoelectric emission?arrow_forward
- A ball has a mass of 0.129 kg just before it strikes the Earth after being dropped from a building 36.2 m tall. What is its de Broglie wavelength? The acceleration of gravity is 9.8 m/s 2 and Planck’s constant is 6.62607 × 10−34 J · s. Answer in units of m.arrow_forwardConsider a fission nuclear explosion producing a temperature of 24 million K (25∗107 K). a) What is be the peak wavelength of the thermally produced photons? b) What is the energy (in eV) for this peak wavelength photon?arrow_forwardA rectangular metal plate measures 0.24 m long and 0.7 m wide. The plate is heated to a temperature of 1,533 K by passing a current through it. Assuming that it behaves like a blackbody, how much power does the plate radiate under these conditions?arrow_forward
arrow_back_ios
arrow_forward_ios