College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Topic Video
Question
The collar in the figure is smooth and has a mass of 2 kg. It is released from its unstretched position at A to a position of y = 1m at point C. Determine the speed it will reach at point C if it is released from point A: (a) while at rest, and (b) with an upward velocity of v = 2 m/s.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A child of mass m = 27 kg slides down a slide of height h = 2.1 m without friction. Let gravitational potential energy be zero at ground level. Write an expression for the child's total mechanical energy, E, at the top of the slide, in terms of the variables in the problem and the acceleration due to gravity g. Calculate the change in the child's potential energy, ΔU in joules, from the top to the bottom of the slide at ground level (i.e. ΔU = Uground- Utop). What is the child's final speed, vf in m/s?arrow_forwardA pogo stick has a spring with a spring constant of 2.5 × 104 N/m, which can be compressed 12.0 cm. To what maximum height from the uncompressed spring can a child jump on the stick using only the energy in the spring, if the child and stick have a total mass of 40 kg?arrow_forwardThe force on a particle is described by 2x^3−6 at a point x along the x-axis. Find the work done in moving the particle from the origin to x=7.arrow_forward
- Consider a 0.5 kg mass at the top of a 1.5 m high (vertical) incline. if it is allowed to slide down with negligible friction, what will be its speed (in m/s) at the bottom?arrow_forwardYou drop a 1.40 kg book to a friend who stands on the ground at distance D = 12.0 m below. Your friend's outstretched hands are at distance d = 1.30 m above the ground (see the figure). (a) What is the speed of the book when it reaches her hands? (b) If we substituted a second book with twice the mass, what would its speed be when it reaches her hands? (c) If, instead, the book were thrown down with initial speed 5.90 m/s, what would be the answer to (a)? (a) Number i Units (b) Number i Unitsarrow_forwardThe figure below shows a plot of potential energy U versus position x of a 0.96 kg particle that can travel only along an x axis. (Nonconservative forces are not involved.) In the graphs, the potential energies are UA = 10.0 J, Ug = 25.0 J, and UC = 35.0 J. (r) Ucr UB 2 4 6 x (m) The particle is released at x = 4.5 m with an initial speed of 8.5 m/s, headed in the negative x direction. (a) If the particle can reach x = 1.0 m, what is its speed there, and if it cannot, what is its turning point? ---Select-- C ---Select- (b) What are the magnitude and direction of the force on the particle as it begins to move to the left of x = 4.0 m? magnitude N direction Suppose, instead, the particle is headed in the positive x direction when it is released at x = 4.5 m at speed 8.5 m/s. (c) If the particle can reach x = 7.0 m, what is its speed there, and if it cannot, what is its turning point? Select Carrow_forward
- The figure here shows a plot of potential energy U versus position x of a 0.877 kg particle that can travel only along an x axis. (Nonconservative forces are not involved.) Three values are UA = 15.0 J, Ug = 35.0 J and Uc = 45.0 J. The particle is released at x = 4.50 m with an initial speed of 7.39 m/s, headed in the negative x direction. (a) If the particle can reach x = 1.00 m, what is its speed there, and if it cannot, what is its turning point? What are the (b) magnitude and (c) direction of the force on the particle as it begins to move to the left of x = 4.00 m? Suppose, instead, the particle is headed in the positive x direction when it is released at x = 4.50 m at speed 7.39 m/s. (d) If the particle can reach x = 7.00 m, what is its speed there, and if it cannot, what is its turning point? What are the (e) magnitude and (f) direction of the force on the particle as it begins to move to the right of x = 5.00 m? Uc UB UA 4. x (m) (a) Number | Unit (b) Number Unit (c) (d) Number…arrow_forwardA child of mass m = 29 kg slides down a slide of height h = 2.4 m without friction. Let gravitational potential energy be zero at ground level. Calculate the change in the child's potential energy, ΔU in joules, from the top to the bottom of the slide at ground level (i.e. ΔU = Uground - Utop).arrow_forwardA point guard launches a basketball m = 1 kg straight up with an initial speed of v0 = 6.5 m/s. The ball leaves his hand at shoulder height h0 = 2.2 m. Let gravitational potential energy be zero at ground level. Give the total mechanical energy of the ball E in terms of maximum height hm it reaches, the mass m, and the gravitational acceleration g.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON