College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A 6.00 ✕ 105 kg subway train is brought to a stop from a speed of 0.500 m/s in 0.400 m by a large spring bumper at the end of its track. What is the force constant k of the spring?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A cannon with a spring constant of 147 N/m is compressed by 20 cm to shoot marbles of mass 30 g. What is the farthest distance that it can shoot without hitting the top of the ceiling that is 3.0m above the ground?arrow_forwardA glider that is 180 kg is pushed by a spring with constant 3.2*10^5 N/m down a water slide track from a height of 35m in a zig zag path. Once the slide reaches the floor level track, it will be eventually stop due to friction. Friction only exists on the ground level, and the coefficient of kinetic friction here is 0.8. If 70 meters is the max distance that the glider move on this ground level track, what is the safest maximum distance that the spring can be compressed if a 20 kg person is also on the glider.arrow_forwardA block with a mass m is initially compressing a spring by x1 on a horizontal floor with no friction. The spring has a spring constant k. The block is realeased from rest and travels a total distance of D including x1 and has a speed of v. what is the coefficent of kinetic friction between the floor and block?arrow_forward
- A fully compressed spring shoots a block up a 60 degree slope. What is the max distance the block moves if: 1)There is no friction 2)Friction exists where ?k=0.3 ?=1400 N/m ?=0.2kg, ?compressed=0.1?arrow_forwardA 4.50 x 105 kg subway train is brought to a stop from a speed of 0.500 m/s in 0.300 m by a large spring bumper at the end of its track. What is the force constant k of the spring (in N/m)? (Enter a number.) N/marrow_forwardAn M = 22.4 kg sled slides on a rough horizontal ground. The sled hits a spring when it is traveling with a horizontal velocity of vi = 12.3 m/s. The sled compresses the spring at a distance of x = 2.12 m before coming to rest. If the force constant of the spring is k = 550 N/m, find the effective coefficient of kinetic friction, μk, between the sled and the groundarrow_forward
- A 4.00 ✕ 105 kg subway train is brought to a stop from a speed of 0.500 m/s in 0.300 m by a large spring bumper at the end of its track. What is the force constant k of the spring (in N/m)? Answer___________ N/marrow_forwardI have tried this problem several times how do I do it correctly?arrow_forwardA small anvil of massm= 10 kg is dropped from rest from a heightH= 7.0 m abovethe top of a large, vertically-oriented spring, which gets compressed from its relaxed(equilibrium) position when the anvil lands on it. The spring has spring constantk= 5000Nm. How far does the anvil compress the spring? You may treat the fullcompression distance as your ”ground”, and assume no air resistance.arrow_forward
- A vertical ideal spring, spring constant k, is compressed a distance A. A mass m is placed on top of the spring and then released. a) How high will the mass go? Н y=0 y=0 Answer: b) If instead the force exerted by the spring is given by F= -(ky+b), how high will the mass go?arrow_forwardA block of mass 14.0 kg slides from rest down a frictionless 40.0° incline and is stopped by a strong spring with k = 2.30 ✕ 104 N/m.The block slides 3.00 m from the point of release to the point where it comes to rest against the spring. When the block comes to rest, how far has the spring been compressed?arrow_forwardA toy gun uses a spring to project a 5.4-g soft rubber sphere horizontally. The spring constant is 8.0 N/m, the barrel of the gun is 17 cm long, and a constant frictional force of 0.034 N exists between barrel and projectile. With what speed does the projectile leave the barrel if the spring was compressed 6.1 cm for this launch? (Assume the projectile is in contact with the barrel for the full 17 cm.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON