Power System Analysis and Design (MindTap Course List)
6th Edition
ISBN: 9781305632134
Author: J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps with 5 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Consider two interconnected voltage sources connected by a line of impedance Z=jX, as shown in Figure 2.27. (a) Obtain expressions for P12 and Q12. (b) Determine the maximum power transfer and the condition for it toarrow_forwardTo convert a per-unit impedance from old to new base values, the equation to be used is Zp.u.new=Zp.u.old(VbaseoldVbasenew)2(SbasenewSbaseold)Zp.u.new=Zp.u.old(VbaseoldVbasenew)2(SbasenewSbaseold)Zp.u.new=Zp.u.old(VbaseoldVbasenew)2(SbasenewSbaseold)arrow_forwardConsider three ideal single-phase transformers (with a voltage gain of ) put together as three-phase bank as shown in Figure 3.35. Assuming positive-sequence voltages for Va,Vb, and Vc find Va,Vb, and VC. in terms of Va,Vb, and Vc, respectively. (a) Would such relationships hold for the line voltages as well? (b) Looking into the current relationships, express IaIb and Ic in terms of IaIb and Ic respectively. (C) Let S and S be the per-phase complex power output and input. respectively. Find S in terms of S.arrow_forward
- 2. a) Explain the terms load factor and diversity factor. b) Discuss the advantages of interconnected grid system. c) A generating station is to supply four regions of load whose peak loads are 10 MW, 5 MW, 8 MW and 7 MW. The diversity factor at the station is 1-5 and the average annual load factor is 60%. Calculate: (i) the maximum demand on the station, (ii) annual energy supplied by the station and (iii) suggest the installed capacity and the number of units.arrow_forwardAnalyse several voltage and current situations in different loading scenarios in a simplified radial (transformer to consumption) medium-voltage power system example. There are only 2 nodes in the 35 kV line – node 0 from the 110/35 kV and node 1 with one consumer. Briefly reflect on the complexity of the calculations for known input or output voltage, as well as for fixed or voltage-dependent consumption in this simple power system model. Analyse and discuss the sensitivity of the voltage drop [in % of amplitude and the degrees of phase] with respect to the current level [in %] and to the power factor.arrow_forwardExplain the concept of FACTS (Flexible Alternating Current Transmission Systems) devices. How do they enhance the control and stability of power systems? Provide examples of FACTS devices and their applications.arrow_forward
- i need the answer quicklyarrow_forwardA generation station of 3 MW supply a two region A & B .The load variation of these regions is as follow: Region A (Time) From midnight from 4a.m to From 10a.m to From 5p.m to to 4a.m 10a.m 5p.m 7p.m From 7p.m to midnight Load(kw) 800 500 NO load 300 100 Region B (Time) From From From From From midnight 6a.m to 2p.m to 4p.m to 9p.m to Load(kw) to 6a.m 300 2p.m 4p.m 9p.m midnight 600 No load 800 1100 With neglect transmission line losses. Find the load factor, diversity factor, reserve capacity,plant use factor.arrow_forwardQ2. Figure Q2 shows the single-line diagram. The scheduled loads at buses 2 and 3 are as marked on the diagram. Line impedances are marked in per unit on 100 MVA base and the line charging susceptances are neglected. a) Using Gauss-Seidel Method, determine the phasor values of the voltage at load bus 2 and 3 according to second iteration results. b) Find slack bus real and reactive power according to second iteration results. c) Determine line flows and line losses according to second iteration results. d) Construct a power flow according to second iteration results. Slack Bus = 1.04.20° 0.025+j0.045 0.015+j0.035 0.012+j0,03 3 |2 134.8 MW 251.9 MW 42.5 MVAR 108.6 MVARarrow_forward
- what are the advantage of per unit computation in power system analysis?arrow_forwardTwo generating units rated for 500 MW and 400 MW have governor speed regulation of 6.0 and 6.4 percent, respectively, from no-load to full-load, respectively. The generators are operating in paral lel and share a load of 600 MW. Use a common base of 1000 MVA and assuming free governor action, justify: i) the new governor speed regulation. ii) the load shared by each unit.arrow_forwardConstruct the circuit in Figure 1 in the Circuit JS simulator. Note that the voltage source is given in RMS. Within Circuit JS while defining the max voltage of the voltage source include “rms” after the number to tell Circuit JS that this is a rms value. Also note that there are additional parameters when instantiating a transformer in Circuit JS. Leave these at the default values. Additionally, transformers may have problems simulating in Circuit JS. Answer the following: 1. From the simulation results, determine the power dissipated in R2 and compare to the expected value from the previous section.2. Change the transformer ratio (“Ratio” as a fraction when you “Edit…” the transformer component) to the value calculated in the previous section to provide maximum power transfer in R2. Note: In Circuit JS, Transformer Ratio = Primary/Secondary.3. Rerun the simulation, calculate the power dissipated in R2 and compare to the expected value from the previous section.4. Change the…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage Learning
Power System Analysis and Design (MindTap Course ...
Electrical Engineering
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:Cengage Learning