College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Topic Video
Question
A student standing on a cliff throws a stone from a vertical height of d=8.0m
above the level ground with velocity v0=15m/s at an angle θ=18∘ below the horizontal.
It moves without air resistance. Use a Cartesian coordinate system with the origin at the initial position of the stone.
With what speed, in meters per second, does the stone strike the ground?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 4 steps with 4 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 0, y 0) 44. A projectile is launched from the point (x QC with velocity (12.0î + 49.0 j) m/s, at t = 0. (a) Make a table listing the projectile's distance |r| from the ori- gin at the end of each second thereafter, for 0 s I S 10 s. Tabulating the x and y coordinates and the compo- nents of velocity v and v will also be useful. (b) Notice that the projectile's distance from its starting point increases with time, goes through a maximum, and starts to decrease. Prove that the distance is a maximum when the position vector is perpendicular to the veloc- ity. Suggestion: Argue that if v is not perpendicular to f, then r|must be increasing or decreasing. (c) Determine the magnitude of the maximum displacement. (d) Explainarrow_forwardTo start an avalanche on a mountain slope, an artillery shell is fired with an initial velocity of 330 m/s at 46.0° above the horizontal. It explodes on the mountainside 40.0 s after firing. What are the x and y coordinates of the shell where it explodes, relative to its firing point?arrow_forwardIn the figure, a ball is thrown leftward from the left edge of the roof, at height h above the ground. The ball hits the ground 1.60 s later, at distance d = 25.0 m from the building and at angle 8 = 69.0° with the horizontal. (a) Find h. (Hint: One way is to reverse the motion, as if on videotape.) What are the (b) magnitude and (c) angle relative to the horizontal of the velocity at which the ball is thrown (positive angle for above horizontal, negative for below)? (a) Number i (b) Number i Units Unitsarrow_forward
- A student standing on a cliff that is a vertical height d= 25 ft above the level ground throws a stone with velocity v0= 73 ft/s at an angle θ = 25 ° below horizontal. The stone moves without air resistance; use a Cartesian coordinate system with the origin at the stone's initial position. 1).With what speed, vf in feet per second, does the stone strike the ground? 2).arrow_forwardA space vehicle is coasting at a constant velocity of 20.5 m/s in the +y direction relative to a space station. The pilot of the vehicle fires a RCS (reaction control system) thruster, which causes it to accelerate at 0.351 m/s2 in the +x direction. After 33.2 s, the pilot shuts off the RCS thruster. After the RCS thruster is turned off, find (a) the magnitude and (b) the direction of the vehicle's velocity relative to the space station. Express the direction as an angle (in degrees) measured from the +y direction.arrow_forwardA space vehicle is coasting at a constant velocity of 17.0 m/s in the +y direction relative to a space station. The pilot of the vehicle fires a RCS (reaction control system) thruster, which causes it to accelerate at 0.291 m/s2 in the +x direction. After 54.3 s, the pilot shuts off the RCS thruster. After the RCS thruster is turned off, find (a) the magnitude and (b) the direction of the vehicle's velocity relative to the space station. Express the direction as an angle (in degrees) measured from the +y direction.arrow_forward
- You hit a golf ball from the (level) ground, with an initial speed and an initial angle. Ignore air resistance. (This is very unrealistic.) The initial speed is v0 = 23.7 m/s, and the angle the ball is hit at is θ = 46o. Calculate vx0, the initial horizontal component of velocity (in m/s). What equations describe the trajectory of the golf ball?arrow_forwardFor safety reasons, park rangers decide to start an avalanche on a mountain slope. They fire an artillery shell at an angle of 520 above the horizontal with an initial speed of 295 m/s. Thirty seconds later they see the explosion. What is the x coordinates of the shell where it explodes, relative to the firing point?arrow_forwardA person stands at the edge of a cliff and throws a rock horizontally over the edge with a speed of Vo = 22.0 m/s. The rock leaves his hand at a height of h = 46.0 m above level ground at the bottom of the cliff, as shown in the figure. Note the coordinate system in the figure, where the origin is at the bottom of the cliff, directly below where the rock leaves the hand. = i (a) What are the coordinates of the initial position of the rock? (Enter your answers in m.) хо Yo = Voy Vy y = 4o (b) What are the components of the initial velocity? (Enter your answers in m/s.) Vox m/s m/s 11 m m (c) Write the equations for the x- and y-components of the velocity of the rock with time. (Use the following as necessary: t. Assume that vx and v, are in m/s and t is in seconds. Do not include units in your answers.) oral m/s m/s Simuna wir + Accumo that y andy are in meters and it is in seconds. Do notarrow_forward
- A baseball is thrown at an angle θ = 22° above the horizontal with an initial vertical velocity v0y = 13.5 m/s. Use a Cartesian coordinate system with the origin at the baseball's initial position. Calculate the initial horizontal velocity component, v0x in m/s.arrow_forwardA student standing on a cliff throws a stone from a vertical height d=8.0m above the level ground with velocity v0=16.2m/s at an angle θ=34∘ below the horizontal. It moves without air resistance. Use a Cartesian coordinate system with the origin at the stone's initial position. 1).With what speed, in meters per second, does the stone strike the ground? 2) which option is correct If the stone had been thrown from the clifftop with the same initial speed and the same angle, but above the horizontal, then compare their impact velocities. The impact velocity when throwing a stone above horizontal will be more than the case when throwing a stone below horizontal. The impact velocities of the two situations will be the same. More information is needed to conclude the relative strength of impact velocities. The impact velocity when throwing a stone above horizontal will be less than the case when throwing a stone below horizontal.arrow_forwardA woman stands at the edge of a cliff and throws a stone horizontally over the edge with a speed of v0 = 21.5 m/s. The stone leaves her hand at a height of h = 57.0 m above level ground at the bottom of the cliff, as shown in the figure. Note the coordinate system in the figure, where the origin is at the bottom of the cliff, directly below where the stone leaves the hand. Write the equations for the position of the stone with time, using the coordinates in the figure. Use the following as necessary: t. Assume that x and y are in meters and t is in seconds.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON