
Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question
Steam enters the high-pressure turbine of a steam power plant that operates on the ideal reheat Rankine cycle at 700 psia and 900°F and leaves as saturated vapor. Steam is then reheated to 800°F before it expands to a pressure of 1 psia. Heat is transferred to the steam in the boiler at a rate of 6 × 104 Btu/s. Steam is cooled in the condenser by the cooling water from a nearby river, which enters the condenser at 45°F. Use steam tables.
NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part.
Determine the pressure at which reheating takes place. Use steam tables.
Find:
The reheat pressure is psia. (P4)
Find thermal efficiency
Find m dot
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 3 images

Knowledge Booster
Similar questions
- Steam enters the high-pressure turbine of a steam power plant that operates on the ideal reheat Rankine cycle at 800 psia and 900 °F and leaves as saturated vapor. Steam is then reheated to 800 deg F before it expands to a pressure of 1 psia. Heat is transferred to the steam in the boiler at a rate of 6x104 Btu/s. Steam is cooled in the condenser by the cooling water from a nearby river, which enters the condenser at 45 °F. Show the cycle on a T-s diagram with respect to saturation lines. Determine also the following: the pressure at which reheating takes place, the net power output and thermal efficiency, and the minimum mass flow rate of the cooling water required. A. 741.0 Ibm/s, 39.4%, 62.23 psia B. 641.0 Ibm/s, 49.4%, 62.23 psia C. 641.0 Ibm/s, 39.4%, 62.23 psia D. 641.0 Ibm/s, 39.4%, 72.23 psiaarrow_forwardRefrigerant-134a is used as the working fluid in a simple ideal Rankine cycle which operates the boiler at 2000 kPa and the condenser at 24C. The mixture at the exit of the turbine has a quality of 93 percent. Determine the turbine inlet temperature, the cycle thermal efficiency, and the back-work ratio of this cycle.arrow_forwardConsider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500°C and is cooled in the condenser at a pressure of 7.5 kPa. Determine the thermal efficiency of the cycle. The thermal efficiency of the cycle is 59.6 %.arrow_forward
- Consider a steam power plant operating on the ideal Rankine cycle. Steam enters the turbine at 3 MPa and 350°C and is condensed in the condenser at a pressure of 10 kPa. Determine the thermal efficiency if steam is superheated to 600°C instead of 350°C in % Note: Include your T - S diagram on your solution. Clear and no Erasures.arrow_forwardSteam in a reheat Rankine cycle enters the first-stage turbine at 8000 kPa and 500°C. The steam leaves this first turbine at 600 kPa as a saturated vapor. The steam is then reheated isobarically back to 500°C before entering the second-stage turbine. At the exit of this second turbine, the steam is at 10 kPa and 50°C. The net power output of this cycle is 100 MW, and the water leaves the condenser as a saturated liquid. You may assume the pump functions isentropically and that there are no pressure losses in the condenser and boiler. Determine Calculate the mass flow rate of steam, in kg/h.arrow_forwardConsider a steam power plant that operates on a reheat Rankine cycle and has a net power output of 80 MW. Steam enters the high-pressure turbine at 10 MPa and 500°C and the low-pressure turbine at 1.4 MPa and 500°C. Steam leaves the condenser as a saturated liquid at a pressure of 10 kPa. Assume both turbine and compressor are isentropic. Determine the thermal efficiency of the cycle. Use steam tables. The thermal efficiency of the cycle is 100 %.arrow_forward
- Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500°C and is cooled in the condenser at a pressure of 7.5 kPa. Determine the mass flow rate of the steam. The mass flow rate of steam is 109.1 kg/s.arrow_forwardConsider a steam power plant operating on the ideal reheat Rankine cycle. Steam enters the high-pressure turbine at 15 MPa and 600°C and is condensed in the condenser at a pressure of 10 kPa. If the moisture content of the steam at the exit of the low-pressure turbine is not to exceed 10.4 percent, determine (a) the pressure at which the steam should be reheated and (b) the thermal efficiency of the cycle. Assume the steam is reheated to the inlet temperature of the high-pressure turbinearrow_forwardWater enters the turbine of an ideal Rankine cycle as superheated vapor at 10 MPa and 600°C. If the condenser pressure is 10 kPa, Calculate the thermal efficiency of the system.arrow_forward
- A steam power plant operates on a Rankine cycle and has a net power output of 50 MW. Steam enters the turbine at 1000 psia and 1000 F and is cooled in the condenser at a pressure of 2 psia. The enthalpy at the exit of the pump is 97.588 Btu/lbm. The mass flow rate of the steam is 104.09 Ibm/s. In the question that follows, select the answer that is closest to the true value. What is the heat going to the boiler in units of Btu/s ?arrow_forwardConsider a steam power plant that operates on a reheat Rankine cycle and has a net power output of 80 MW. Steam enters the high-pressure turbine at 10 MPa and 500°C and the low-pressure turbine at 1.8 MPa and 500°C. Steam leaves the condenser as a saturated liquid at a pressure of 10 kPa. Assume both turbine and compressor are isentropic. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the quality (or temperature, if superheated) of the steam at the turbine exit. The quality of the steam at the turbine exit isarrow_forwardA steam Rankine cycle operates between the pressure limits of 1500 psia in the boiler and 2 psia in the condenser. The turbine inlet temperature is 800F. The turbine isentropic efficiency is 90 percent, the pump losses are negligible, and the cycle is sized to produce 2500 kW of power. Calculate the mass flow rate through the boiler, the power produced by the turbine, the rate of heat supply in the boiler, and the thermal efficiency.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY