College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Some studies suggest that the upper frequency limit of hearing is determined by the diameter of the eardrum. The wavelength of the sound wave and the diameter of the eardrum are approximately equal at this upper limit. If the relationship holds exactly, what is the diameter of the eardrum of a person capable of hearing 2.00 x 104 Hz? (Assume a body temperature of 37.0°C.)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Calculate the sound intensity level in decibels for a sound wave traveling in air at 0 ºC and having a pressure amplitude of 0.656 Pa.(speed of sound=331 m/s, air density= 1.29 kg/m3arrow_forwardFor a person with normal hearing, the faintest sound that can be heard at a frequency of 400 Hz has a pressure amplitude of about 6.0 × 10-5 Pa. Use bulk modulus for air 1.42 × 105 Pa and v = 344 m/s at 20°C. Calculate the sound intensity level in decibels.arrow_forwardYour experiments on a particular insulator indicate that at 20°C, the average speed of sound in the insulator is vi = 8500 m/s and its bulk modulus is Bi = 370 GPa. Experimental results from your colleague show that a certain metal alloy has a density of ρm = 6500 kg/m3 and a bulk modulus of Bm = 110 GPa. a. Calculate the density of the insulator ρi in kilograms per cubic meter. b. Calculate the speed of sound vm in the metal alloy in meters per second. c. If the sound traveled as indicated in the structure in figure 1, emerging from the insulator at time ti and the alloy at time tm, determine Δt = tm - ti in seconds. The length of the structure is L = 1.0 m. d. Find the total amount of time t, in seconds, it takes to travel through the structure as indicated in figure 2. The length of the structure is L = 1.0 m.arrow_forward
- The speed of sound in air is 331 m/s at atmospheric pressure and 0 Celsius. Suppose you put a electronic pinger in an air-tight glass jar and change the pressure of the air inside by a factor 1.3, while the volume, composition and temperature of the air remain the same. What speed would you measure for the sound inside the jar? Give your answer in m/s.arrow_forwardA sound wave at 20° C has pressure amplitude of 2.00 Pa. The density of air is 1.2 Kg/m and the threshold for hearing intensity is 1012 w/m2. The speed of sound in air is 344 m/s. (a) Find the intensity of the sound wave. (b) Find the intensity in decibels.arrow_forwardThe speed of sound in a solid medium is 15 times greater than that in air. If the frequency of a wave in the solid is 61 kHz, then what is the wavelength? (The speed of sound in air is 344 m/s.)arrow_forward
- A certain metal with atomic mass 2.3∗10-25 kg has an interatomic bond with length 2.4∗10-10 m and stiffness 42 n/m. What is the speed of sound in a rod made of this metal?arrow_forwarda noise level meter reads the sound level in a room to be 85 dB. What is the intensity of sound in W/m^2?arrow_forwardA sound wave in a solid has a frequency of 12.0 kHz and a wavelength of 0.333 m. What would be the wave speed, and how much faster is this speed than the speed of sound in air? (The speed of sound in air is 344 m/s.)arrow_forward
- The speed of sound in an ideal gas (not air) is 750 m/s at -50°C. What is the speed of sound in the same gas at T = 55°C? The absolute zero temperature is -273.15°C. The speed of sound, cs(T = 55°C) = Unitsarrow_forwardsound waves in air ( v = 343 m/s ) has a frequency of 320 Hz. In ocean water, its wavelength is 4.875 m. What is the speed of sound in seawater? 343 m/s 1005 m/s 1300 m/s 1440 m/s 1560 m/sarrow_forwarda medical imaging system sends a soundwave through a piece of bone. the speed of sound through bone is 3500 m/s. if it takes 275 microseconds for the sound wave to make a round trip back and forth across the bone, what is the thickness of the bone?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON