Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Shown in the figure, an insulated rigid tank is divided into two equal parts by a partition. Initially, one part contains an indeal gas, and the other part is evacuated. The partition is then removed, and the gas expands into the entire tank. At the initial state, the mass of the gas is m= 4.00kg, initial pressure is p1 = 600.00 kPa, initial temperature is T1 = 300.00 K. The gas constant is R = 0.2870 kJ/(kg·K). (The internal energy can be determined by the equation ΔU=m·cv·(T2-T1), where cv = 0.7180 kJ/(kg·K) is the specific heat at the constant volume.)
Calculate the volume of the tank. Vtotal__________ (m3)
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A piston-cylinder device contains an ideal gas of nitrogen. At the initial state, the volume is V1= 1.00 m3, the pressure is p1= 400.00 kPa, the temperature is T1= 300.00 K. An electric heater within the device is turned on for a time of Δt = 5.00 min. The current is I = 3.00 A, and the source voltage is V = 120.00 V. During the heating process, the gas expands, and a heat loss of Qout = 2.80 kJ occurs. The gas constant is R = 0.297 kPa·m3/(kg·K), and the room temperature specific heat at constant pressure is cp =1.039 kJ/(kg·K). Calculate the mass of the gas, m__________ (kg)arrow_forwardi need urgent i will 10 upvotes .typing onlyarrow_forwardShown in the figure, an insulated rigid tank is divided into two equal parts by a partition. Initially, one part contains an indeal gas, and the other part is evacuated. The partition is then removed, and the gas expands into the entire tank. At the initial state, the mass of the gas is m= 4.00kg, initial pressure is p1 = 600.00 kPa, initial temperature is T1 = 300.00 K. The gas constant is R = 0.2870 kJ/(kg·K). (The internal energy can be determined by the equation ΔU=m·cv·(T2-T1), where cv = 0.7180 kJ/(kg·K) is the specific heat at the constant volume.) Calculate the final state temperature T2.__________ (K)arrow_forward
- Shown in the figure, an insulated rigid tank is divided into two equal parts by a partition. Initially, one part contains an indeal gas, and the other part is evacuated. The partition is then removed, and the gas expands into the entire tank. At the initial state, the mass of the gas is m= 4.00kg, initial pressure is p1 = 600.00 kPa, initial temperature is T1 = 300.00 K. The gas constant is R = 0.2870 kJ/(kg·K). (The internal energy can be determined by the equation ΔU=m·cv·(T2-T1), where cv = 0.7180 kJ/(kg·K) is the specific heat at the constant volume.) Calculate the final state pressure p2.__________ (kPa)arrow_forwardA piston-cylinder device contains an ideal gas of nitrogen. At the initial state, the volume is V1= 1.00 m3, the pressure is p1= 400.00 kPa, the temperature is T1= 300.00 K. An electric heater within the device is turned on for a time of Δt = 5.00 min. The current is I = 3.00 A, and the source voltage is V = 120.00 V. During the heating process, the gas expands, and a heat loss of Qout = 2.80 kJ occurs. The gas constant is R = 0.297 kPa·m3/(kg·K), and the room temperature specific heat at constant pressure is cp =1.039 kJ/(kg·K). Calculate the electrical work done on the gas, Wele__________ (kJ)arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY