Show that the given basis for S is orthogonal. 1 4 S = span S = 6- Let s1 = and s2 = Then s1· S2 = so {S1, S2} ---?--- 8 an orthogonal basis for S. 6. Write s as a linear combination of the basis vectors. (Give your answer in terms of s, and s2.) S =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Show that the given basis for \( S \) is orthogonal.**

\[ S = \text{span} \left( \left[ \begin{array}{c} 1 \\ 1 \\ 0 \end{array} \right], \left[ \begin{array}{c} 1 \\ -1 \\ 6 \end{array} \right] \right), \quad \mathbf{s} = \left[ \begin{array}{c} 1 \\ 4 \\ -9 \end{array} \right] \]

Let 

\[
\mathbf{s}_1 = \left[ \begin{array}{c} 1 \\ 1 \\ 0 \end{array} \right] \quad \text{and} \quad \mathbf{s}_2 = \left[ \begin{array}{c} 1 \\ -1 \\ 6 \end{array} \right]
\]

Then 

\[
\mathbf{s}_1 \cdot \mathbf{s}_2 = \underline{\qquad} 
\]

so \(\{\mathbf{s}_1, \mathbf{s}_2\} \) is an orthogonal basis for \( S \).

**Write \(\mathbf{s}\) as a linear combination of the basis vectors. (Give your answer in terms of \(\mathbf{s}_1\) and \(\mathbf{s}_2\).)**

\[ \mathbf{s} = \underline{\qquad} \]
Transcribed Image Text:**Show that the given basis for \( S \) is orthogonal.** \[ S = \text{span} \left( \left[ \begin{array}{c} 1 \\ 1 \\ 0 \end{array} \right], \left[ \begin{array}{c} 1 \\ -1 \\ 6 \end{array} \right] \right), \quad \mathbf{s} = \left[ \begin{array}{c} 1 \\ 4 \\ -9 \end{array} \right] \] Let \[ \mathbf{s}_1 = \left[ \begin{array}{c} 1 \\ 1 \\ 0 \end{array} \right] \quad \text{and} \quad \mathbf{s}_2 = \left[ \begin{array}{c} 1 \\ -1 \\ 6 \end{array} \right] \] Then \[ \mathbf{s}_1 \cdot \mathbf{s}_2 = \underline{\qquad} \] so \(\{\mathbf{s}_1, \mathbf{s}_2\} \) is an orthogonal basis for \( S \). **Write \(\mathbf{s}\) as a linear combination of the basis vectors. (Give your answer in terms of \(\mathbf{s}_1\) and \(\mathbf{s}_2\).)** \[ \mathbf{s} = \underline{\qquad} \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,