Advanced Engineering Mathematics
Advanced Engineering Mathematics
10th Edition
ISBN: 9780470458365
Author: Erwin Kreyszig
Publisher: Wiley, John & Sons, Incorporated
Bartleby Related Questions Icon

Related questions

Question

Solve this mutliple choice linear algebra question.

**Finding the Vector \( \mathbf{x} \) Based on Coordinate Vector \( \mathbf{x}_{\mathcal{B}} \)**

The task is to determine the vector \( \mathbf{x} \) based on the given coordinate vector \( \mathbf{x}_{\mathcal{B}} \) and the basis \( \mathcal{B} \).

Given data:
\[ \mathbf{x}_{\mathcal{B}} = \begin{bmatrix} -4 \\ 8 \\ -7 \end{bmatrix} \]
and the basis \( \mathcal{B} \) is:
\[ \mathcal{B} = \left\{ \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ -5 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ -7 \\ 3 \end{bmatrix} \right\} \]

Next, we need to identify the vector \( \mathbf{x} \) from the given multiple choice options.

### Options Provided:

1. \(\mathbf{x} = \begin{bmatrix} 0 \\ 1 \\ -5 \end{bmatrix}\)
2. \(\mathbf{x} = \begin{bmatrix} 7 \\ -3 \\ -2 \end{bmatrix}\) <span style="background-color: #E6E6FA;">(Selected)</span>
3. \(\mathbf{x} = \begin{bmatrix} -2 \\ 0 \\ 5 \end{bmatrix}\)

### Explanation of the Provided Basis and Coordinate Vector

A basis in linear algebra is a set of linearly independent vectors in a vector space such that any vector in the space can be expressed as a linear combination of these basis vectors. The given basis consists of three vectors:
\[ \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ -5 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ -7 \\ 3 \end{bmatrix} \]

Given that these vectors form a basis for the space, the vector \( \mathbf{x} \) can be written as a linear combination of these basis vectors, weighted by the coefficients in \( \mathbf{x}_{\mathcal{B}}
expand button
Transcribed Image Text:**Finding the Vector \( \mathbf{x} \) Based on Coordinate Vector \( \mathbf{x}_{\mathcal{B}} \)** The task is to determine the vector \( \mathbf{x} \) based on the given coordinate vector \( \mathbf{x}_{\mathcal{B}} \) and the basis \( \mathcal{B} \). Given data: \[ \mathbf{x}_{\mathcal{B}} = \begin{bmatrix} -4 \\ 8 \\ -7 \end{bmatrix} \] and the basis \( \mathcal{B} \) is: \[ \mathcal{B} = \left\{ \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ -5 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ -7 \\ 3 \end{bmatrix} \right\} \] Next, we need to identify the vector \( \mathbf{x} \) from the given multiple choice options. ### Options Provided: 1. \(\mathbf{x} = \begin{bmatrix} 0 \\ 1 \\ -5 \end{bmatrix}\) 2. \(\mathbf{x} = \begin{bmatrix} 7 \\ -3 \\ -2 \end{bmatrix}\) <span style="background-color: #E6E6FA;">(Selected)</span> 3. \(\mathbf{x} = \begin{bmatrix} -2 \\ 0 \\ 5 \end{bmatrix}\) ### Explanation of the Provided Basis and Coordinate Vector A basis in linear algebra is a set of linearly independent vectors in a vector space such that any vector in the space can be expressed as a linear combination of these basis vectors. The given basis consists of three vectors: \[ \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ -5 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ -7 \\ 3 \end{bmatrix} \] Given that these vectors form a basis for the space, the vector \( \mathbf{x} \) can be written as a linear combination of these basis vectors, weighted by the coefficients in \( \mathbf{x}_{\mathcal{B}}
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated
Text book image
Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education
Text book image
Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Basic Technical Mathematics
Advanced Math
ISBN:9780134437705
Author:Washington
Publisher:PEARSON
Text book image
Topology
Advanced Math
ISBN:9780134689517
Author:Munkres, James R.
Publisher:Pearson,