Refrigerant 134a enters an insulated diffuser as a saturated vapor at 80°F with a velocity of 800 ft/s. The inlet area is exit, the pressure is 400 lb/in² and the velocity is negligible. The diffuser operates at steady state and potential ener neglected. Determine the mass flow rate, in lb/s, and the exit temperature, in °F.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

pls answer the given

Refrigerant 134a enters an insulated diffuser as a saturated vapor at 80°F with a velocity of 800 ft/s. The inlet area is 1.4 in². At the
exit, the pressure is 400 lb/in² and the velocity is negligible. The diffuser operates at steady state and potential energy effects can be
neglected.
Determine the mass flow rate, in lb/s, and the exit temperature, in °F.
Step 1
Determine the mass flow rate, in lb/s.
m =
i
lb/s.
Transcribed Image Text:Refrigerant 134a enters an insulated diffuser as a saturated vapor at 80°F with a velocity of 800 ft/s. The inlet area is 1.4 in². At the exit, the pressure is 400 lb/in² and the velocity is negligible. The diffuser operates at steady state and potential energy effects can be neglected. Determine the mass flow rate, in lb/s, and the exit temperature, in °F. Step 1 Determine the mass flow rate, in lb/s. m = i lb/s.
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Refrigeration and Air Conditioning
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY