
Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question

Transcribed Image Text:Question 3.
Three tool materials are to be compared for the same finish turning operation on a batch of 100 steel parts: high speed steel, cemented
carbide, and ceramic. For the high speed steel tool, the 170 Taylor equation parameters are: n= 0.125 and C= 70. The price of the HSS
tool is $15.00 and it is estimated that it can be ground and reground 15 times at a cost of $1.50. Tool change time = 3 min. Both carbide
and ceramic tools are in insert form and can be held in the same mechanical toolholder. The Taylor equation parameters for the cemented
carbide are: n = 0.25 and C = 500; and for the ceramic: n = 0.6 and C = 3,000. The cost per insert for the carbide = $6.00 and for the
ceramic = $8.00. Number of cutting edges per insert in both cases = 6. Tool change time = 1.0 min for both tools. Time to change parts
= 2.0 min. Feed = 0.25 mm/rev, and depth = 3.0 mm. The cost of machine time = $30/hr. The part dimensions are: diameter = 56.0 mm
and length = 290 mm. Setup time for the batch is 2.0 hr. For the three tooling cases, compare: (a) cutting speeds for minimum cost, (b)
tool lives, (c) cycle time, (d) cost per production unit, (e) total time to complete the batch and production rate. (f) What is the proportion
of time spent actually cutting metal for each tooling?
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Subject: manufacturing processarrow_forwardA Ø1.0” piece of titanium needs to be turned on a lathe using a carbide cutting tool. The surface speed is 170 ft/min and the chip load is .015 in/rev. What is the recommended feed for the turning operation above?arrow_forwardThe following data were obtained from a time study performed on a horizontal milling machine: Average manual effort time per cycle: 4.62 minutes. Average cutting time (electric feed): 3.74 minutes. Average performance rating: 115%.Machine clearance (power supply): 10% Fatigue clearance: 15%. What is the standard time for the operation?arrow_forward
- In a turning operation, cutting speed =200 m/min; feed = 0.25mm mm/rev, and depth of cut = 4.00mm Thermal diffusivity of the work material = 20m mm^2/s and volumetric specific heat =3.5(10^ -3 )J/mm^ 3 -C If the temperature increase above ambient temperature (20degreesC) is the angle measured by a tool-chip thermocouple to be 700degreesC, determine the specific energy for the work material in this operation.arrow_forwardA student is performing a turning operation with a workpiece with an initial diameter of 40 mm to produce a 30 mm diameter rod that is 100 mm long. The lathe power is 20 kW and is operating on 85% mechanical efficiency. If the student set the cutting speed to 0.5 m/min and the cutting tool is set to have a rake angle of 5 degrees: a.) What material can we choose for the rod is the coefficient of friction is 0.5? b.) If we select 4130 normalized heat-treated steel for the rod, and coefficient of friction is 0.5, what will the maximum depth of cut we can achieve?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY