Question 2a) Give the Stefan Boltzman equation and define each term.[4]b) A electric room heater (radiator) element is 25 cm long and 4 cm in diameter. The element dissipates heat to the surroundings at 1500 W mainly by radiation, the surrounding temperature being 15°C. Determine the equilibrium temperature of the element surface.[4]c) A composite cylinder consists of 10 cm radius steel pipe of 25 mm thickness over which two layers of insulation 30 mm and 35 mm are laid. The conductivities are 25 W/mK, 0.25 W/mK and 0.65 W/mK. The inside is exposed to convection at 300°C with h 65 W/m2K.The outside is exposed to air at 30°C with h 15 W/m2K. Determinei. the heat loss/m,the interface temperatures.ii. The overall heat transfer coefficient.[4][4][2]
Question 2
a) Give the Stefan Boltzman equation and define each term.
[4]
b) A electric room heater (radiator) element is 25 cm long and 4 cm in diameter. The element dissipates heat to the surroundings at 1500 W mainly by radiation, the surrounding temperature being 15°C. Determine the equilibrium temperature of the element surface.
[4]
c) A composite cylinder consists of 10 cm radius steel pipe of 25 mm thickness over which two layers of insulation 30 mm and 35 mm are laid. The conductivities are 25 W/mK, 0.25 W/mK and 0.65 W/mK. The inside is exposed to convection at 300°C with h 65 W/m2K.The outside is exposed to air at 30°C with h 15 W/m2K. Determine
i. the heat loss/m,
the interface temperatures.
ii. The overall heat transfer coefficient.
[4]
[4]
[2]
Step by step
Solved in 2 steps