Q1: In this Zener diode regulator, the source voltage varies from 6 V to 14 V. Assume that the load current varies between 1 mA and 35 mA, and that the diode is an ideal 4 V Zener diode. What is the largest allowable resistance that will ensure the load voltage remains constant with variations in load current and source voltage? Please enter your answer to 3 significant figures. Q2: Given the circuit design for a Zener diode regulator in the Ques 1, what is the maximum power that will be dissipated by the Rs resistor? You are told that the source voltage Vs varies from 6 V to 11 V, the load current il varies between 2 mA and 45 mA, and the diode is an ideal 3 V Zener diode. You will need to recalculate the maximum allowable resistance Rs with your new values, as part of this question. Please enter your answer to 3 significant figures, and in Watts.
Q1: In this Zener diode regulator, the source voltage varies from 6 V to 14 V. Assume that the load current varies between 1 mA and 35 mA, and that the diode is an ideal 4 V Zener diode. What is the largest allowable resistance that will ensure the load voltage remains constant with variations in load current and source voltage? Please enter your answer to 3 significant figures.
Q2: Given the circuit design for a Zener diode regulator in the Ques 1, what is the maximum power that will be dissipated by the Rs resistor? You are told that the source voltage Vs varies from 6 V to 11 V, the load current il varies between 2 mA and 45 mA, and the diode is an ideal 3 V Zener diode. You will need to recalculate the maximum allowable resistance Rs with your new values, as part of this question. Please enter your answer to 3 significant figures, and in Watts.
Step by step
Solved in 4 steps with 3 images