College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Professor Dee is studying standing waves in his lab. He takes a tube open at one end that produces a standing wave with a fundamental frequency of 685Hz when the temperature is -5.00°C, what is the length of the tube in meters?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A tuning fork generates sound waves with a frequency of 232 Hz. The waves travel in opposite directions along a hallway, are reflected by walls, and return. The hallway is 42.0 m long and the tuning fork is located 14.0 m from one end. What is the phase difference between the reflected waves when they meet at the tuning fork? The speed of sound in air is 343 m/s.arrow_forwardThe function y(x, t) = A cos(kx - wt) describes a traveling wave on a taut string with the x-axis parallel to the string. If the wavelength of the wave λ = 0.61 m and w = 18.9π/s, what is the speed of the traveling wave? Express your answer in m/s, to at least one digit after the decimal point.arrow_forwardA 38.0-Hz sound wave is barely audible at a sound intensity level of 60.0 dB. The density of air at 20.0°C is 1.20 kg/m3. Speed of sound in air at 20.0°C is 343 m/s. What is the displacement amplitude of a 38.0-Hz sound wave? What is the ratio of the displacement amplitude to the average distance between molecules in air at room temperature, about 3.00 nm?arrow_forward
- Two tubes of gas are identical and are open only at one end. One tube contains neon (Ne) and the other krypton (Kr). Both are monatomic gases, have the same temperature, and may be assumed to be ideal gases. The fundamental frequency of the tube containing neon is 475 Hz. What is the fundamental frequency of the tube containing krypton? The atomic masses are given by 20.180 u for neon, and 83.80 u for krypton. Number i Unitsarrow_forwardOscillation of a 300 Hz tuning fork sets up standing waves in a string clamped at both ends. The wave speed for the string is 460 m/s. The standing wave has four loops and an amplitude of 2.5 mm. (a) What is the length of the string? (b) Write an equation for the displacement of the string as a function of position and time. Round numeric coefficients to three significant digits. I got 2.5sin(4.09x)cos(600pi*t), I think I'm close but I don't have it right.arrow_forwardA steel cable with total length 53 m and mass 120 kg is connected to two poles. The tension in the cable is 1,578 N, and the wind makes the cable vibrate with a frequency of 2 Hz. Calculate the wavelength of the resulting wave on the cable.arrow_forward
- A music instrument is open only on one end. When a musician blows air in it, it is at the body temperature of 36C. If the musician places a finger to form a column of 20cm, what is the fundamental frequency of the sound produced? What is the wavelength of that sound wave?arrow_forwardA transverse wave travels across a string having a linear mass density 0.069 kg/m. The wavelength of the wave is measured to be 0.685 m and the frequency is 31.5 Hz. What is the tension in the string?arrow_forwardA flagpole consists of a flexible, 2.65 m tall fiberglass pole planted in concrete. The bottom end of the flagpole is fixed in position, but the top end of the flagpole is free to move. What is the lowest frequency fi of the standing wave formed by the flagpole, if the wave propagation speed in the fiberglass is 2730 m/s? fi = Hzarrow_forward
- 1. (a) What is the intensity in w/m of a laser beam used to burn away cancerous tissue that, when 90.0% absorbed, puts 540 J of energy into a circular spot 2.2 mm in diameter in 1.5 s? Hint: The laser is a collimated beam of light and does not produce a spherical wave. w/m? (b) Reflect on how this intensity compares to the average intensity of sunlight (about 1W/m) and the implications that would have if the laser beam entered your eye. Note how your answer depends on the time duration of the exposure. The intensity of a laser is about damaging if they enter your eye. times that of the sun, so clearly lasers can be veryarrow_forwardA string has a length of 2.50 m and is fixed at the ends. At a frequency of 85.0 Hz, a standing wave with 5 loops is formed. What is the wavelength of the wave when it is vibrating at the fundamental frequency of the wave? What is the fundamental frequency of the wave? At what frequency would the third overtone occur?arrow_forwardA steel cable with total length 57 m and mass 140 kg is connected to two poles. The tension in the cable is 1,981 N, and the wind makes the cable vibrate with a frequency of 2 Hz. Calculate the wavelength of the resulting wave on the cable.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON