Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 3 images
Knowledge Booster
Similar questions
- Three electromagnetic waves travel through a point P along the x axis. They are polarized parallel to the y axis, with the following variations in their amplitudes. What is the phase angle of their resultant at P? E1 E2 E3 = = = (10 µV/m) sin([2.0 × 1014 rad/s] t) (5.0 μV/m) sin([2.0 × 10¹4 rad/s] t + 45°) (5.0 μV/m) sin([2.0 × 1014 rad/s] t - 45°) ○ 15° ○ 30° ○ 90° ○ 45° ○ 0°arrow_forwardThree electromagnetic waves travel through a certain point P along an x axis. They are polarized parallel to a y axis, with the following variations in their amplitudes. Find their resultant at P. E = (5.0 x 10-5 V/m) sin[(2.0 x 1014 rad/s)t] E2 = (7.0 x 10-6 V/m) sin[(2.0 × 1014 rad/s)t + 45°] Ez = (7.0 x 10 6 V/m) sin[(2.0 x 1014 rad/s)t - 45°] E = ) sin[C_ 1014 )t +arrow_forward(b) The earth has a radius of R = 6.4 x 106 m. It orbits the sun in a nearly circular orbit at an average distance of r = 1.5x 10¹1 m. The solar intensity at the upper atmosphere is 1367 W/m². How much energy does the sun radiate per second?arrow_forward
- hw 2 Laser beams are sometimes used to burn away cancerous tissue. What is the intensity, in watts per square meter, of a laser beam that is 90.0% absorbed by a 2.1-mm diameter spot of cancerous tissue and must deposit 515 J of energy to it in a time period of 4.05 s?arrow_forwarda solar panel is a square 0.5m on a side and absorbs all the light that hits it. It the panel has a mass of 3 kg. what intensity of light would be necessary to hold it up against the force of gravity (its own weight)? how much bigger is this than the solar constant (1400 W/m^2)?arrow_forwardAt a distance of 39 ft , an ionizing radiation source delivers 7.0 rem of radiation. How close can you get to the source without having any biological effects? The intensity of the radiation increases as you move closer to the radiation source according to the equation I1 / I2 =D22/D12arrow_forward
- Betelgeuse, a red-giant star in the constellation Orion, has a peak in its radiation at a frequency of 3.09 X 10^14 Hz. What is the surface temperature of Betelgeuse?arrow_forwardWe used an experimental setup like the one shown below. The length of the string between the string vibrator and the pulley is L = 2.00 m. The mass per unit length or linear density of the string is μ = 0.0005 kg/m. The string vibrator can oscillate at any frequency. The hanging mass is 511 g. Frictionless pulley String vibrator μl= dm dx The wavelength of the fifth mode (n = 5) is m. The frequency of the fifth mode (n = 5) is Hz. The tension in the string is close to When the mode of vibration is increased to n = 10, the wave speed of the string will → 2 The wave speed on the string is m/s. N. constant Drag answer here Drag answer here Drag answer here Drag answer here Drag answer here m Hanging mass 500 125 remain the same 0.8 100 2.0 increasearrow_forwardhello, I need help pleasearrow_forward
- Optical tweezers use light from a laser to move single atoms and molecules around. Suppose the intensity of light from the tweezers is 1000 W/m², the same as the intensity of sunlight at the surface of the Earth. (a) What is the pressure on an atom if light from the tweezers is totally absorbed? Pa (b) If this pressure were exerted on a helium atom, what would be its acceleration? (The mass of a helium atom is 6.65 x 10-27 kg. Assume the cross-sectional area of the laser beam is 6.65 x 10-29 m².) m/s²arrow_forwardA spacecraft approaching a star at 4.00 E 7 m/s fires a laser at a stationary target. The beam of light has an apparent frequency of 5.04 E 16 hz. What is the wavelength of the light beam that hits the target? a 1.26 E 9 m b 5.95 E −9 m c 7.94 E −10 m d 8.24 E −9 marrow_forwardYou and your friend Bruce are experimenting with a red lamp shade and blue lamp shade. You place lamp shades individually over a 120-W light bulb. Assume that the light radiates from the lamps uniformly and 9.5% of their power is converted to light. (a) What is the average intensity of the light at 1.6 m from the red (1 = 710 nm) lamp shade? W/m2 (b) Is the average intensity of the blue (1 = 480 nm) lamp shade at 1.8 m greater than, less than, or equal to the intensity calculated in part (a)? greater than less than O equal toarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios