Question
Problem 9: A horizontal force, F1 = 95 N, and a force, F2 = 19.7 N acting at an angle of θ to the horizontal, are applied to a block of mass m = 2.1 kg. The coefficient of kinetic friction between the block and the surface is μk = 0.2. The block is moving to the right.
Part (a) Solve numerically for the magnitude of the normal force, FN in Newtons, that acts on the block if θ = 30°.
Part (b) Solve numerically for the magnitude of acceleration of the block, a in m/s2, if θ = 30°.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 4 steps with 1 images
Knowledge Booster
Similar questions
- A block with mass m1 = 8.7 kg is on an incline with an angle θ = 37° with respect to the horizontal. The coefficients of friction are: μk = 0.36 and μs = 0.396. Another block with mass m2 = 15.5 kg is attached to the first block. The new block is made of a different material and has a greater coefficient of static friction. What minimum value for the coefficient of static friction is needed between the new block and the plane to keep the system from accelerating?arrow_forwardIn a two-dimensional tug-of-war, Alex, Betty, and Charles pull horizontally on an automobile tire at the angles shown in the picture. The tire remains stationary in spite of the three pulls. Alex pulls with force ₁ of magnitude 207 N, and Charles pulls with force Fc of magnitude 188 N. Note that the direction of Fc is not given. What is the magnitude of Betty's force if Charles pulls in (a) the direction drawn in the picture or (b) the other possible direction for equilibrium? 142° Alex Charles Betty (a) Number i (b) Number i Units Units <arrow_forwardBob is pulling a box of his toys of mass 15.0 kg along a rough horizontal surface for a distance of 6.00 m. The tension force in the rope is 58.0 N and the angle is 30° with respect to the horizontal. The frictional force on the box is 18.0 N. Match the answers with questions. (Hint: Clearly draw the force vector and displacement vector for all cases.) What is the angle between the tension force vector and the displacement vector? A. 90° v What is the angle between the friction force vector and the displacement vector? B. none of the given v What is the angle between the normal force vector and the displacement vector? C. 60° D. 150° Е. 0° F. 210° G. 180° Н. 30°arrow_forward
- Three forces act on a moving object. One force has a magnitude of 75.0 N and is directed due north. Another has a magnitude of 54.6 N and is directed due west. What must be (a) the magnitude and (b) the direction of the third force, such that the object continues to move with a constant velocity? Express your answer as a positive angle south of east. (a) Number i (b) Number Units Unitsarrow_forwardA particle, which remains at rest, is acted on by three forces F, G and H. The force F has magnitude 55 N and is directed to the left and up making an angle of 45 degrees with the vertical The force G is directed vertically down and H is directed to the right and up making an angle of 60 degrees with the vertical. Find the magnitude of the vectors G and H, giving your answers to one decimal place. The magnitude of G is N (to 1 d.p.) The magnitude of H is N (to 1 d.p.)arrow_forwardA block having a mass of m = 13 kg is suspended via two cables as shown in the figure. The angles shown in the figure are as follows: α = 14° and β = 32°. We will label the tension in Cable 1 as T1 and the tension in Cable 2 as T2. a) Write an expression for the sum of forces in the x direction in terms of T1, T2, m, g, α, and β. Use the specified coordinate system. b) Write an expression for the sum of forces in the y direction in terms of T1, T2, m, g, α, and β. Use the specified coordinate system.arrow_forward
- If a 3kg box is moving down a ramp with ramp angle 15° and a friction coefficient μk of 0.4, what is the magnitude of the force of friction on the box (in N)?arrow_forwardMany physical properties, such as force and mass, cannot be measured directly. Rather, some other physical property is measured and the desired physical property is computed from the results. For example, a bathroom scale does not actually measure mass or "weight," but rather the compression distance of a spring. The numerical values on the scale are calibrated from the compression distance using basic physics principles such as Newton's second law. Coefficients of friction cannot be measured directly. In this problem, we are going to learn how we can indirectly measure the coefficient of kinetic friction between two surfaces by directly measuring the expansion of a spring. Consider a 5.45 kg5.45 kg block that is dragged by a spring on a (relatively) frictionless horizontal surface at constant velocity. Suppose the block reaches a rough patch and the spring stretches by 5.25 cm5.25 cm. Compute the coefficient of kinetic friction ?μ between the block and the rough patch if the spring…arrow_forwardDetermine the force Q-> when the block moves with constant velocity. Express your answer in vector form.arrow_forward
- A 781 N sprinter can push his feet back against the starting blocks with a force of 1852 N in the horizontal direction. If the force is generated for 0.28 s, determine the horizontal velocity of the runner out of the blocks. Include magnitude and direction when reporting vectors.arrow_forwardA block of mass 4.6 kg is sliding down a ramp with an initial speed of 1.5 m/s. The ramp is inclined from the horizontal by an angle theta = 34.9 degrees and the coefficient of kinetic friction is uk = 0.73. What is the magnitude of the displacement of the block along the ramp from the initial time until it stops?arrow_forwardA 2.30 kg block is initially at rest on a horizontal surface. A horizontal force of magnitude 5.92 N and a vertical force are then applied to the block (see the figure). The coefficients of friction for the block and surface are us = 0.4 and Uk = 0.25. Determine the magnitude of the frictional force acting on the block if the magnitude of P is (a)7.00 N and (b)10.0 N. (The upward pull is insufficient to move the block vertically.) (a) Number i (b) Number i Units Units P € }arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios