College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A simple pendulum with mass, m=1 kg andlength, L=2.0 m is released by a push when the support string is at an angle of 45 degrees from the vertical direction. The initial speed of the suspended mass at the release point is 3.0 m/s.
(a) The maximum angle that pendulum moves in thesecond half of its swing is ______
(b) The mechanical energy of pendulum (measured relative to its lowest point) is ______
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- How much elastic potential energy will a linear spring have if it has a spring constant of 440.5 N/m and a stretch of 1.0?arrow_forwardA pendulum of mass 90 gm and length 60 cm is left to swing from an initial angle of 40 degrees, and seen to raise up to an angle of 38 degrees when it reaches the other side. How much energy did the pendulum lose? Why is there a loss of energy?arrow_forwardA 0.220-kg block resting on a frictionless, horizontal surface is attached to a spring having force constant 83.8 N/m as in the figure below. A horizontal force F causes the spring to stretch at a distance of 5.49 cm from its equilibrium position. (a) Find the value of F. (Enter the magnitude of the force only.) N(b) What is the total energy stored in the system when the spring is stretched? J(c) Find the magnitude of the acceleration of the block immediately after the applied force is removed. m/s2(d) Find the speed of the block when it first reaches the equilibrium position. m/s(e) If the surface is not frictionless but the block still reaches the equilibrium position, how would your answer to part (d) change? The block would arrive at a greater speed. The block would arrive at a lower speed. The block would arrive at the same speed. (f) What other information would you need to know to find the actual answer to part (d) in this case?arrow_forward
- Problem 10: A simple pendulum with mass, m=1 kg and length, L=2.0 m is released by a push when the support string is at an angle of 45° from the vertical direction. The initial speed of the suspended mass at the release point is 3.0 m/s. (a) The maximum angle that pendulum moves in the second half of its swing is (b) The mechanical energy of pendulum (measured relative to its lowest point) isarrow_forwardA block with mass 300 g is held at rest against a spring with spring con- stant 200 N/m that has been compressed 3 cm from its equilibrium length. The block is released and allowed to slide on a table, and the coefficient of kinetic friction between the block and the Problem 1 table is 0.3. The block slides a short distance on the table and then comes to rest. Assume the block loses contact with the spring when the spring is at its equilibrium length, and that the friction force only acts after the block has lost contact with the spring. (a) How much work does the spring force do on the block? (b) How much work does the kinetic friction force do on the block? (c) After leaving the spring, what distance does the block slide before coming to rest? (d) What speed did the block have after sliding 5 cm from the point it lost contact with the spring?arrow_forwardOne end of a spring is attached to a fixed wall while a 0.25-kg block is attached to the other movable end. The spring is stretched 0.7-m horizontally, then released from rest. Calculate its speed when it goes back to equilibrium if the spring's force constant is k = 5 N/m.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON