Problem 1 (Using thermodynamic tables) A large refrigeration plant is to be maintained at -12 C. It requires refrigeration at a rate of 120 kW. The condenser of the plant is to be cooled by liquid water, which experiences a temperature rise of 10 C as it flows over the coils of the condenser. Assuming the plant operates on the ideal vapor-compression cycle using refrigerant- 134a between the pressure limits of 100 and 700 kPa,  determine (a) the mass flow rate of the refrigerant, (b) the power input to the compressor, and (c) the mass flow rate of the cooling water

Refrigeration and Air Conditioning Technology (MindTap Course List)
8th Edition
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Chapter22: Condensers
Section: Chapter Questions
Problem 7RQ: When a standard-efficiency air-cooled condenser is used, the condensing refrigerant will normally be...
icon
Related questions
Question

Problem 1 (Using thermodynamic tables)
A large refrigeration plant is to be maintained at -12 C. It requires refrigeration at a rate of 120 kW.
The condenser of the plant is to be cooled by liquid water, which experiences a temperature rise of 10 C as it flows over the coils of the condenser. Assuming the plant operates on the ideal vapor-compression cycle using refrigerant- 134a between the pressure limits of 100 and 700 kPa, 
determine (a) the mass flow rate of the refrigerant, (b) the power input to the compressor,

and (c) the mass flow rate of the cooling water

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Refrigeration and Air Conditioning
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Refrigeration and Air Conditioning Technology (Mi…
Refrigeration and Air Conditioning Technology (Mi…
Mechanical Engineering
ISBN:
9781305578296
Author:
John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:
Cengage Learning