Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Question
thumb_up100%
NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part.
A refrigerator uses refrigerant-134a as the working fluid and operates on the vapor-compression refrigeration cycle. The evaporator and condenser pressures are 100 kPa and 1400 kPa, respectively. The isentropic efficiency of the compressor is 88 percent. The refrigerant enters the compressor at a rate of 0.022 kg/s superheated by 26.37°C and leaves the condenser subcooled by 4.4°C.
Problem 11.021.b - Comparison to ideal vapor compression cycle
Determine the rate of heat removal from the refrigerated space, the rate of heat rejection from the refrigerant to the environment, the power input, and the COP if the cycle is operated on the ideal vapor-compression refrigeration cycle between the same pressure limits. (Take the required values from saturated refrigerant-134a tables.)
The rate of heat removal from the refrigerated space is kW.
The rate of heat rejection from the refrigerant to the environment is kW.
The power input is kW.
The COP is .
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Numerical answers shall be in four (4) decimal places. Box your final answersarrow_forwardNumerical answers shall be in four (4) decimal places. Box your final answersarrow_forwardNOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. A commercial refrigerator with refrigerant-134a as the working fluid is used to keep the refrigerated space at -30°C by rejecting its waste heat to cooling water that enters the condenser at 18°C at a rate of 0.28 kg/s and leaves at 26°C. The refrigerant enters the condenser at 1.2 MPa and 65°C and leaves at 42°C. The inlet state of the compressor is 60 kPa and -34°C and the compressor is estimated to gain a net heat of 420 W from the surroundings. The heat exchanger loses no heat to the environment. 26°C 42°C Condenser Expansion valve Evaporator OL Water 18°C 1.2 MPa 65°C Oin W in Compressor 60 kPa -34°C Determine the COP of the refrigerator. (You must provide an answer before moving on to the next part.) The COP of the refrigerator is 1.824 >arrow_forward
- NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. A commercial refrigerator with refrigerant-134a as the working fluid is used to keep the refrigerated space at -30°C by rejecting its waste heat to cooling water that enters the condenser at 18°C at a rate of 0.28 kg/s and leaves at 26°C. The refrigerant enters the condenser at 1.2 MPa and 65°C and leaves at 42°C. The inlet state of the compressor is 60 kPa and -34°C and the compressor is estimated to gain a net heat of 420 W from the surroundings. The heat exchanger loses no heat to the environment. 26°C 42°C ↑ 4 Condenser Expansion valve Evaporator QL Water 18°C 1.2 MPa 65°C ↑gin Win Compressor 60 kPa -34°C Determine the theoretical maximum refrigeration load for the same power input to the compressor. The theoretical maximum refrigeration load for the same power input to the compressor is KW.arrow_forwardNOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. A commercial refrigerator with refrigerant-134a as the working fluid is used to keep the refrigerated space at -30°C by rejecting its waste heat to cooling water that enters the condenser at 18°C at a rate of 0.28 kg/s and leaves at 26°C. The refrigerant enters the condenser at 1.2 MPa and 65°C and leaves at 42°C. The inlet state of the compressor is 60 kPa and -34°C and the compressor is estimated to gain a net heat of 420 W from the surroundings. The heat exchanger loses no heat to the environment. 26°C 42°C Expansion valve 4 Condenser ↓ Evaporator Water 18°C QL 1.2 MPa 65°C Qin W in Compressor 60 kPa -34°C Determine the quality of the refrigerant at the evaporator inlet. (Take the required values from saturated refrigerant-134a tables.) (You must provide an answer before moving on to the next part.) The quality of the refrigerant at the evaporator inlet isarrow_forwardThe ordinary household refrigerator is a good example of the application of this cycle. Evaporator Freezer compartment Capillary ube Kitchen air 25°C -18°C Condenser coils 3°C Comprosor HW: Q1: Refrigerant-134a is the working fluid in an ideal compression refrigeration cycle. The refrigerant leaves the evaporator -20°C and has a condenser pressure of 0.9 MPa. The mass flow rate is 3 kg/min. Find COP,, COPR. Camat for same Tmas and Tmin, and the tons of refrigeration. Q2: A simple VCRC using R-134a operates with a condensing temperature of 30°c and an evaporating temperature of -20°c .The system produces 50 kw of refrigeration. Determine the : a) Thermodynamic property values at the four main state points of the cycle, b) COP, c) Rate of refrigerant flow. Another measure of the effectiveness of the refrigeration cycle is how much input power to the compressor, in horsepower, is required for each Ton of cooling. The unit conversion is 4.715 hp per Ton of cooling To convert from COP to…arrow_forward
- In a vapor-compression refrigeration cycle, 9 kg/min of ammonia exits the evaporator as saturated vapor at-12°C. The refrigerant enters the condenser at 16 bar and 140C, and saturated liquid exits at 16 bar. There is no significant heat transfer between the compressor and its surroundings, and the refrigerant passes through the evaporator with a negligible change in pressure. Determine the refrigerating capacity, in kW. kW %3D Determine the power input to the compressor, in kW. kW %3Darrow_forwardRequired information NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. A commercial refrigerator with refrigerant-134a as the working fluid is used to keep the refrigerated space at -30°C by rejecting its waste heat to cooling water that enters the condenser at 18°C at a rate of 0.29 kg/s and leaves at 26°C. The refrigerant enters the condenser at 1.2 MPa and 65°C and leaves at 42°C. The inlet state of the compressor is 60 kPa and -34°C and the compressor is estimated to gain a net heat of 430 W from the surroundings. The heat exchanger loses no heat to the environment. 26°C 42°C ↓ Condenser 3 Expansion valve Water 18°C Evaporator QL (2) 1.2 MPa 65°C lin Win Compressor 60 kPa -34°C Determine the COP of the refrigerator. (You must provide an answer before moving on to the next part.) The COP of the refrigerator isarrow_forwardAn ammonia-water absorption refrigeration cycle is used to keep a space at -5 C when the ambient temperature is 20 C. Pure ammonia enters the condenser at 20 bar and 60 C at a rate of 0.02 kg/s. Ammonia leaves the condenser as a saturated liquid and is expanded to 2 bar. Ammonia leaves the evaporator as a saturated vapor. Heat is supplied to the generator by geothermal liquid water that enters at 100 C at a rate of 0.25 kg/s and leaves at 70 C. Determine (a) the cooling capacity (in TR) and (b) COP of the system. The enthalpies of ammonia at various states of the system are: condenser inlet h2 = 1510 kJ/kg, evaporator inlet h4 = 418 kJ/kg, evaporator exit h1 = 1420 kJ/kg. Take the specific heat of geothermal water to be 4.18 kJ/kg-Karrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY