Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A pizza oven has an interior temperature of 250◦C and the outside ambient kitchen temperature is 25◦C. The oven is made of brick 20 cm thick of thermal conductivity kb = 1 W/m/K. It is covered with an insulating material 1 cm thick of conductivity ki = 0.05 W/m/K. The heat transfer coefficient at the insulation surface is h = 15 W/m2/K, while the heat transfer coefficient at the inner surface of the oven has a very large value. Assume a planar (slab) geometry. Determine
(a The heat flux from the oven
(b If the heat flux is to be reduced to 400 W/m2, what additional thickness of insulation will be required?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Consider a wall with multiple layers. First layer is 20cm thick brick with 0.66 heat conductivity coefficient, second layer is 3cm thick grout with 0.6 heat conductivity coefficient, third layer is 8cm thick lime with 0.58 heat conductivity coefficient and the outer layer 1.2 cm thick grout with 0.6 heat conductivity coefficient. Walls inner and outer heat conductivity coefficient with order is 5.6 w/m2K and 11w/m2K. The room temperature is 22C and outside temperature is -5C. With these information please calculate the questions below. a) Total heat transfer coefficientb) Total heat resistancec) Total heat transfer d) surface temperature difference between grout and limearrow_forwardThe wall of the furnace is 30.48 mm thick and is insulated from outside. Thermal conductivity of the wall material is 0.1 W/m K and the insulation material is 0.01 W/m K. The furnace operates at 650 0C and the ambient temperature is 30 0 Allowable temperature on the outer side of the insulation is 1000C. Determine the overall heat transfer by conduction per unit area occurring across a furnace wall made from clay. If the air side heat transfer coefficient is 0.4 W/m2 K, calculate the minimum insulation thickness requirement.arrow_forwardThe efficiency of a single cylindrical cross-section fin is 85%. The diameter of the fin is 13 mm and it extends 32 mm from the base. The base is 65 K hotter than the surrounding fluid, and the heat transfer coefficient is 32 W/m2K. How many fins would be required to increase heat transfer from the base by 50 W? Give your answer as an integer.arrow_forward
- Q2/ Consider a 1.2-m-high and 2-m-wide glass window whose thickness is 6 mm and thermal conductivity is k = 0.78 W/m. °C. Determine the steady rate of heat transfer through this glass window and the temperature of its inner surface for a day during which the room is maintained at 24°C while the temperature of the outdoors is 5°C. Take the convection heat transfer coefficients on the inner and outer surfaces of the window to be h1 = 10 W/m2 °C and h2= 25 W/m2 °C, and disregard any heat transfer by radiation.arrow_forwardCalculate the heat loss through a 100-ft² wall with an inside temperature of 65°F and an outside temperature of 35°F. Assume the exterior wall is composed of 2- in. of material having a 'k' factor of 0.80, and 2-in. of insulation having a conductance of 0.16. RTotal = 8.75 & Q = 342-Btu/hr RTotal = 9.2 & Q = 399-Btu/hr RTotal = 8.75 & Q = 399-Btu/hr RTotal = 9.2 & Q = 342-Btu/hr Hide hint for Question 3 Utilize the (RTotal = 1/C + x1/k1) equation.arrow_forwardthe composite wall of a refrigerator has a thermal conductivity of 0.05 W/m-K and a wall thickness of 50 mm. In a room of 25 °C, the refrigerated cold space inside the refrigerator is maintained at 4 °C. Assume the inner and outer convection heat transfer coefficients are 5 W/m² K and 10 W/m².K, respectively. Neglect radiation heat transfer. Determine the rate of heat leaking into the refrigerator per unit surface area.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY