Elements Of Electromagnetics
7th Edition
ISBN: 9780190698614
Author: Sadiku, Matthew N. O.
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
The efficiency of a single cylindrical cross-section fin is 85%. The diameter of the fin is 13 mm and it extends 32 mm from the base. The base is 65 K hotter than the surrounding fluid, and the heat transfer coefficient is 32 W/m2K. How many fins would be required to increase heat transfer from the base by 50 W? Give your answer as an integer.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 3 steps with 8 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A steam bath center in a gym consists of a wall three different material layers. First two layers have thermal conductivity of 5 W/m K, 10 W/m K and 2*(10) W/m K respectively. All three layers have thickness of 8 cm each. The inside wall surface temperature of steam room is 80 °C whereas outside surface temperature is 25 °C. Draw this composite wall. Calculate the heat transfer per unit length of the wall.arrow_forwardA room is well insulated apart from a single-glazed window measuring 1 m2 and 4 mm thick. The internal air temperature is 22oC and outside it is -12oC. If the external convective heat transfer coefficient, hout, is double that of the inside coefficient, and the conductivity in the glass is negligible. Determine hout if Q = 100 W.arrow_forwardPlease solve this, thank you very mucharrow_forward
- Consider a large plane wall of thickness L = 0.2 m, thermal conductivity k = 1.2 W/mK, and surface area A = 15 m². Internally, the wall is assumed to generate heat at 500 W/m³. The left and right surfaces of the walls are exposed to convective heat transfer. On the left side (at x = 0 m), the wall temperature is maintained at 60°C. On the right surface side (at x = 0.2 m), the surface is exposed to convective heat transfer with an ambient temperature of 20°C. The convective heat transfer coefficient on the right side is assumed to be 200 W/m²K. Please answer the following questions: 1. What are the given material properties and boundary conditions? 2. What is the coordinate system used here? Please draw a schematic with proper coordinates to represent the problem 3. What are the assumptions associated with the problem? 1D, steady state, etc.? 4. Show the full heat conduction equation associated with the problem (including the unsteady term) 5. Show how to reduce it (based on…arrow_forwardConsider one-dimensional, steady-state conditions for the plane composite wall shown be- low. The left surface of wall A is well-insulated with a constant surface temperature of T₁ = 160°C. Heat is generated within wall A at a rate of 5,000 W/m³. The right surface of wall C is maintained at a temperature of T4 = 19°C due to environmental conditions. Assume negligible contact resistance between all interfaces. The thermal conductivity for each wall is listed be- low and the figure indicates the thickness of each wall. (60 points) (a) Find the temperature at interface between wall A and B (x = 20 mm). (b) Find the temperature at interface between wall B and C (x = 85 mm). (c) Sketch the temperature distribution as a function of x for the composite wall. (d) Sketch the heat flux as a function of x for the composite wall. KA = 0.11 W/m.K KB = 0.05 W/m.K kc 0.72 W/m.K T₁ ف A B TA 15 mm 65 mm 20 mmarrow_forwardCalculate the overall heat transfer coefficient of the steel pipe based on the inner surface. The inner diameter of the pipe is 12.7 cm, and the thickness of the pipe is 2.4 cm. The convection heat transfer coefficient in the pipe is 350 W / (m² ° C), the convective heat transfer coefficient outside the pipe is 25 W / (m² ° C), the thermal conductivity of the steel pipe is 15 W / (m ° C). If the pipe is used to deliver steam at 110 ° C and the ambient temperature is 20 ° C, determine the heat transfer rate of the pipe per meter. q = Watt / marrow_forward
- A furnace of 0.3m by 0.3m by 0.6m inside dimensions is constructed of a material having a thermal conductivity of 0.894 W/m.K. The wall thickness is 10cm. The inner and outer surface temperatures are 600 degree Celcius and 100 degree Celcius respectively. Calculate the heat loss through the furnace wall by using (i) Conduction shape factor. (ii) Thermal resistance.arrow_forwardcan you please please do this one and please show all the work please step by steparrow_forwardConsider a power transistor encapsulated in an aluminum case that is attached at its base to a square aluminum plate of thermal conductivity k= 240W/m.K, thickness L= 6mm, and width W= 20mm. The case is joined to the plate by screws that maintain a contact pressure of 1 bar, and the back surface of the plate transfers heat by natural convection and radiation to ambient air and large surroundings at T∞ =Tsur -25°C. The surface has an emissivity of ε=0.9, and the convection coefficient is h=4 W/m².K. The case is completely enclosed such that heat transfer may be assumed to occur exclusively through the base plate. a) If the air-filled aluminum-to-aluminum interface is characterized by an area of A₁=2×10-4 m² and contact resistance of R+c= 1.375 K/W, what is the maximum allowable power dissipation if the surface temperature of the case, Ts,c, is not to exceed 85°C? S,C' Transistor case Ts. Pelec S,C' Enclosure W Isur Base plate, (k,ε) Interface, Ac Air Th 801 b) How much should the h be…arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY