College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
in a race to the moon, by 3/4ths the distance, light is one or ten meters ahead of the particle. We routinely approximate mass as zero, gamma as infinite, and speed as the speed of light. ("Massless particles" -- gamma and m have to be eliminated from the expressions. Light is a true massless particle.)
If a massless particle has momentum 1,349 MeV/c, calculate its energy in MeV.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The cosmic rays of highest energy are protons that have kinetic energy on the order of 1013 MeV. (a) From the point of view of the proton, how many kilometers across is the galaxy? (b) How long would it take a proton of this energy to travel across the Milky Way galaxy, having a diameter ~ 105 light-years, as measured in the proton’s frame?arrow_forwardProtons in a University accelerator are accelerated to a kinetic energy of 16 times their rest energy. (a) What is the relativistic factor gamma for these protons? (b) What is the speed of these protons? (express in terms of c, the speed of light) (c) What is their kinetic energy in MeV? (d) What is the rest energy of the protons? (e) What is their momentum in MeV/c?arrow_forwardObservers in reference frame S see an explosion located at x1=620 m. A second explosion occurs 6.0 micro-s later at x2=1500 m.In reference frame S', which is moving along the +x-axis at speed V, the explosions occur at the same point in space. What is the separation in time delta t' between the two explosions as measured in frame S'? Express your answer in microseconds (micro-s). delta t' = ? micro-sarrow_forward
- Consider a proton that has a momentum of 1.00 kg·m/s. Part (a) Calculate the relativistic parameter γ for the proton. You will have to use a 2.998 × 108 for the speed of light to get this answer correct. Part (b) What is its speed, in meters per second? Such protons form a rare component of cosmic radiation with uncertain origins.arrow_forwardSuppose a cosmic ray colliding with a nucleus in the Earth's upper atmosphere produces a muon that has speed v = 0.99c. The muon then travels at constant speed and lives 1.5 μs as measured in the muon's frame of reference. (You can imagine this as the muon's internal clock.)Randomized Variablesv = 0.99 ct = 1.5 μs Part (a) How many kilometers does the muon travel according to an Earth-bound observer? Part (b) How many kilometers of the Earth pass by as viewed by an observer moving with the muon? Base your calculation on its speed relative to the Earth and its lifetime (proper time).arrow_forwardThe mean lifetime of mesons (pions) is 26 ns. A beam of pions is travelling at 0.93c. As measured in the laboratory: a) What is their mean lifetime? b) How far would they travel before they decay?arrow_forward
- The "muon" is an unstable particle with rest mass m = 106 MeV/c^2. The mean lifetime of a muon at rest is 2.2 microseconds. (micro= 10^-6) Now consider a muon moving in a laboratory, with total relativistic energy E = 2.5 GeV. (G= giga = 10^9). What is the mean distance that the muon would travel relative to the lab, before decaying? (in m) OA: 5.098x103 OB: 7.392x103 OC: OD: OE: 1.072x104 1.554x104 2.254x104 OF: 3.268x104 OG: 4.738x104 OH: 6.870x104arrow_forwardMass of a proton: 1.007825 u; Mass of a neutron: 1.008665 u 1 The lifetime of a free neutron is 887 s. If a neutron moves with a speed 2.9 × 108 m/s relative to an observer in the lab, what does the observer measure the neutron's lifetime to be? What is this an example of? 2. (a) What is the rest energy (in joules) of a subatomic particle whose (rest) mass is 6.7 x 10-3¹ kg? (b) How many MeV's of energy is this? 3. The rest energy of a particular subatomic particle is 1200 MeV. If this particle is traveling at 90% the speed of light, what is its total relativistic energy?arrow_forwardIf relativistic effects are to be less than 1%, then the dimensionless parameter γ must be less than 1.01. At what velocity, in terms of c, is γ = 1.01?arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON