College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Topic Video
Question
The Moon has a mass of 7.35∗1022 kg, and a radius of 1.737∗106 m. Based on these values, what is the acceleration due to gravity on the surface of the Moon?
A) 1.95m/s^2
B) 1.34m/s^2
C) 2.23m/s^2
D) 1.63m/s^2
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Help me to solve this problem step by step and give answer as a 3 significant figuresarrow_forwardmagnitude gravitational force (between a planet with mass 9.00 * 10 ^ 24 and moon, with 2.40 * 10 ^ 22 average distance between their canters 2.10 * 10 ^ 8* m b) ? is the moon's acceleration in m/s^ 2 ) toward the planet(Enter the magnitude. ) m/s^ 2 the planets acceleration (in m/s^ 2 ) the moon?arrow_forwardNewton's law of universal gravitation is represented by Mm F = G- where F is the gravitational force, M and m are masses, and r is a length. Force has the SI units kg · m/s2. What are the SI units of the proportionality constant G? m3 kg - s2 m kg ·s3 m2 kg · s2 m2 kg · 3arrow_forward
- Find the magnitude of the gravitational force (in N) between a planet with mass 7.25 ✕ 1024 kg and its moon, with mass 2.50 ✕ 1022 kg, if the average distance between their centers is 2.90 ✕ 108 m. N (b) What is the moon's acceleration (in m/s2) toward the planet? (Enter the magnitude.) m/s2 (c) What is the planet's acceleration (in m/s2) toward the moon? (Enter the magnitude.) m/s2arrow_forwardIf you are sitting at the equator on Earth, what would your average speed be knowing that the radius of the Earth is 6.37 x 106 m? What would your acceleration on Earth be?arrow_forwardA planet has a mass of 6.90 × 1023 kg and a radius of 2.89 × 106 m. (a) What is the acceleration due to gravity on this planet? (b) How much would a 74.8-kg person weigh on this planet?arrow_forward
- The moon's period of revolution around the Earth is 27.3 d. How far away is the moon from the surface of the Earth? O A) 1.33× 107 m B) 3.83 × 108 m C) 3.77 × 108 m D) 4.88 × 10⁹ marrow_forwardPart A Comets travel around the sun in elliptical orbits with large eccentricities. If a comet has speed 2.1×104 m/s when at a distance of 2.6x1011 m from the center of the sun, what is its speed when at a distance of 4.0×1010 m. Express your answer in meters per second. Πνα ΑΣΦ m/sarrow_forwarda) An object weights 4000 N on planet Alpha. Planet Alpha has 8 times the mass of planet Beta and 4 times the radius of planet Beta. What will the object weight on planet Beta? b) A 60 kg person is sitting on a bathroom scale while riding on a Ferris Wheel. The Ferris Wheel has a radius of 9 m and the person's speed is 3 m/s. Find the scale reading when the person is at the bottom of the motion.arrow_forward
- The standard acceleration of gravity at the earth's surface is g=9.81m/s2. Convert this acceleration to units of inches/min2.arrow_forwarda planet has a mass of 5.58 * 10^23 kg and a radius of 3.12 * 10^6 m. what is the acceleration due to gravity on this planet? how much would a 69.5 kg person weigh on this planet?arrow_forwardConcern the planet Mars, which has a radius of 3400 km. On Mars, the acceleration due to gravity is 3.72 m/s^2 The mass of the sun is 2.0×1030 kg, while the (actual) mass of Mars is 6.4×1023 kg. The average distance from Mars to the sun is 228 million kilometers. a. What is the gravitational force acting on Mars due to the sun? What is the reaction force to this force? Name or explain the force; don’t give a value. b. What are the speed and angular velocity of Mars? Compare the values to those of Earth. c. Using only information provided above, estimate the length of a year on Mars. Compare the value to that of Earth.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON