College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
A conical pendulum consists of a bob of mass m in motion in a circular path in a horizontal plane as shown in Figure. During the motion, the supporting wire of length "l" maintains the constant angle " theta " with the vertical. Show that the magnitude of the
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by stepSolved in 2 steps with 4 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A particle of mass m is dropped from rest at t = 0 at the point (−d, 0, 0) and falls vertically in Earth's gravitational field −gĵ. (a) What is the expression for the angular momentum of the particle about the origin? (Express your answer in vector form. Use any variable or symbol stated above as necessary.) l = (b) Calculate the torque on the particle about the origin. (Express your answer in vector form. Use any variable or symbol stated above as necessary.) τ = (c) Is the torque equal to the time rate of change of the angular momentum? Yes Noarrow_forwardI have submitted this once and tried on my own but can't get it correct. I have tried 7.404 m/s and 2 m/sarrow_forwardA weather vane initially at rest has a moment of inertia of 0.123 kg · m2 about its axis of rotation. A 57.0 g piece of clay is thrown at the vane and sticks to it at a point 24.5 cm from the axis. The initial velocity of the clay is 23.0 m/s, directed perpendicular to the vane. Find the angular velocity of the weather vane just after it is struck. please solvearrow_forward
- A projectile of mass .050 kg moves to the right with a speed of 4.0 m/s. The projectile strikes and sticks to the end of a rod of mass 0.8 kg, at length 1.2 m from the rod's centre. The rod may rotate freely around a stationary axle pinned through the rod's centre of mass. Find the magnitude of the angular velocity, ω, of the system right after the collision. Select one: a. 0.00 rad/s b. 0.27 rad/s c. 0.53 rad/s d. None of the other answers are correct e. 1.05 rad/sarrow_forwardA projectile of mass .050 kg moves to the right with a speed of 4.0 m/s. The projectile strikes and sticks to the end of a rod of mass 0.8 kg, at length 1.2 m from the rod's centre. The rod may rotate freely around a stationary axle pinned through the rod's centre of mass. Find the magnitude of the angular velocity, ω, of the system right after the collision.arrow_forwardA wad of sticky clay with mass m and velocity vi is fired at a solid cylinder of mass M and radius R. The cylinder is initially at rest and is mounted on a fixed horizontal axle that runs through its center of mass. The line of motion of the projectile is perpendicular to the axle and at a distance d < R from the center. (a) Find the angular speed of the system just after the clay strikes and sticks to the surface of the cylinder. (b) Is mechanical energy of the clay–cylinder system conserved in this process?arrow_forward
- A light rigid bar of length, l = 1m, is attached to two particles, with masses m1 = 4 kg and m2 = 3 kg, at their ends. The combination rotates in the xy plane about an axis through the center of the bar, right figure. Determine the angular momentum of the system about the origin when the speed of each particle is 5 m / s.arrow_forwardA particle P with mass 8 kg has position vector r (r = 3.0 m) and velocity v (v = 30.0 m/s) as shown in the figure. It is acted on by force F (F = 4.0 N). All three vectors lie in the xy plane. About the origin, what is the z-component of the angular momentum of the particle? About the origin, what is the z-component of the torque acting on the particle?arrow_forwardA person of mass m = 75 kg stands in the center of a large rotating disk with radius R = 5.0 m and total mass M. The rotates without friction and without any external torque, initially at an angular velocity of w. The moment of inertia of a disk is MR. Assume that the person can be approximated as point-like, i.e. the angular momentum is r x p. The person then walks radially outward. (a) What is the angular momentum of the system (person + disk) as a function of the person's radius, r, from the center? Write it in terms of m, M, R, and w. (b) If the disk is initially rotating at wo and it slows to wp =0.8 rad/s when the person is at the very edge, what is the mass of the disk? 1.1 rad/s when the person is in the exact center, (c) What is the rotational kinetic energy of the system before and after the person walks to the edge?arrow_forward
- A ring (mass 4 M, radius 1 R) rotates in a CCW direction with an initial angular speed 2 ω. A disk (mass 2 M, radius 2 R) rotates in a CW direction with initial angular speed 4 ω. The ring and disk "collide" and eventually rotate together. Assume that positive angular momentum and angular velocity values correspond to rotation in the CCW direction.What is the initial angular momentum Li of the ring+disk system? Write answer in terms of MR2ω. What is the final angular velocity ωf of the ring+disk system? Write your answer in terms of ω.arrow_forwardPhysics written by hand.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON