College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Light passes through a 10-μm-wide slit and is viewed on a screen 1 m behind the slit. If the width of the slit is narrowed, the band of light on the screen will
A. Become narrower.
B. Become wider.
C. Stay about the same.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 3. The glass plates in the figure are separated by a thin round filament. When the top plate is illuminated normally with a light of wavelength 595 nm, the filament lies directly below the fourteenth order bright fringe. What is the diameter of the filament?arrow_forward38. Measurements are made of the intensity distribution within the central bright fringe in a Young's interference pattern (see Fig. 36.5). At a particular value of y, it is found that I/ - 0.810 when 600-nm light is used. What wavelength of light should be used to reduce the relative intensity at the same location to 64.0% of the maximum intensity?arrow_forward10. You have a single-slit diffraction apparatus, with a slit 4.60 × 10−6 m wide arranged 1.80 m from the screen. You would like an anti-node to appear 68.2 cm from the right bisector. What are two possible visible wavelengths you could use?arrow_forward
- 6. Structures on a hummingbird feather act like a diffraction grating having 8000 lines per centimeter. What is the angle of the first-order maximum for 488-nm light? 2 7. When red light illuminates a grating with 7000 lines per centimeter, its second maximum is at 62.4°. What is the wavelength of this light?arrow_forward6. A beam of light traveling in air has a wavelength of 475 nm. If the light illuminates a diffraction grating with 3000 lines/cm, what is the angle of the second-order bright spot produced? f19 0 oof19arrow_forward#21. In a single-slit experiment, light passes through the slit and forms a diffraction pattern on a screen 2.54 [m] away. If the wavelength of light is 655 [nm], and the width of the slit is 4.41 x 10-5 [m], find the linear distance on the screen from the center of the diffraction pattern to the first dark fringe. Upload Choose a Filearrow_forward
- 5. Draw the variation of the mean light intensity (l) with respect to the angle of diffraction (teta) if i is due to interference of light of wavelength (lamda) using 2 slits. It is known that each slit has a width of a(- 2 lamda) and the distance between the two slits is d(- 4 lamda).arrow_forward18. Suppose that you are shining light through a small slit (width = 400 nm). Which will diffract more: a red laser with a wavelength of 650 nm or a green laser with a wavelength of 450 nm? not enough information to determine the diffraction will be the same green laser red laserarrow_forward3. In a double slit experiment, the distance between the slits is d=1 mm. A screen is situated at a distance of 2.5 m from the slits. Point P is at a distance of 25 cm from O', as in Figure. O' is the orthogonal projection of the center between the slits (0) on the screen. Monochromatic light with frequency v= 550 THz is used in this experiment. (a) Calculate the intensity of light at point P. (b) Calculate the angle ZP00'. (c) Calculate the location of the first three maxima with respect to point O'. (d) Calculate the location of the first three minima with respect to point O'. BONUS: You now consider that each slit has width a =0.05 mm. Calculate the intensity of light at point P. P.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON