Question
Let G be the universal gravitational constant and mp be the mass of the planet a satellite is orbiting. Which equation could be used to find the velocity of the satellite if it is placed in a geostationary orbit?
Which factor is not needed when calculating the velocity of a satellite orbiting a planet?
the mass of the planet
the orbital radius of the satellite
the universal gravitational constant
the mass of the satellite
Let G be the universal gravitational constant and mp be the mass of the planet a satellite is orbiting. Which equation could be used to find the velocity of the satellite if it is placed in a low Earth orbit?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 3 steps
Knowledge Booster
Similar questions
- The Moon has a mass 7.35 x 1022 kg of and a radius of 1740 km. Air resistance can be neglected on the Moon. G = 6.67 x 10-11 m3 kg-1 s-2 is the universal gravitational constant. (a) If a ball is launched upwards from the surface of the moon with an initial speed of 1.15 km/s, what height maximum height above the surface of the moon will it reach? Give your answer in kilometers. (b) What is the escape speed of the moon? Give your answer in km/s.arrow_forwardDuring a solar eclipse, the Moon is positioned directly between Earth and the Sun. The masses of the Sun, Earth, and the Moon are 1.99×10^30 kg, 5.98×10^24 kg, and 7.36×10^22 kg, respectively. The Moon's mean distance from Earth is 3.84×10^8 m, and Earth's mean distance from the Sun is 1.50×10^11 m. The gravitational constant is G=6.67×10^−11 N·m2/kg^2. Find the magnitude F of the net gravitational force acting on the Moon during the solar eclipse due to both Earth and the Sun.arrow_forwardScientists want to place a 4 × 103 kg satellite in orbit around Mars. They plan to have the satellite orbit at a speed of 2330 m/s in a perfectly circular orbit. Here is some information that may help solve this problem: mmars = 6.4191 x 1023 kgrmars = 3.397 x 106 mG = 6.67428 x 10-11 N-m2/kg2 1.)Which of the following quantities would change the radius the satellite needs to orbit at? a.)the mass of the satellite b.)the mass of the planet c.)the speed of the satellite 2.)What should the speed of the orbit be, if we want the satellite to take 8 times longer to complete one full revolution of its orbit?arrow_forward
- The gravitational acceleration constant gx on Planet X can be approximated by determining the acceleration of an object assuming Newton's Law of Universal Gravitation. If gx = 3.8 m/s^2 , G = 6.7 x 10^-11 Nm^2/kg^2, and Planet X's radius is 4000 km, what is the approximate mass of planet X? Give answer in kg.arrow_forwardThe mean distance of an asteroid from the Sun is 1.74 times that of Earth from the Sun. From Kepler's law of periods, calculate the number of years required for the asteroid to make one revolution around the Sun.arrow_forwardThe International Space Station (ISS) is a space station orbiting the earth above the ground. If the radius of the earth is 3,958.8 miles, mass of earth is 5.972 x 10 24 kg, the period of the ISS at the orbit around the earth is 9.16 hours, can you calculate what is the distance from the ISS to the surface of the earth, in unit of miles? Use G=6.674 x 10 -11 Nm2/kg2. Write your answer in pure numbers, for example, 4567.8. Please keep at least on digit after the decimal point.arrow_forward
- What is the escape speed from a planet of mass M = 3.1 x 1023 kg and radius R = 2.6 x 106 m? Write the answer in terms of km/s.arrow_forwardA satellite is traveling around a planet in a circular orbit with radius R. It moves in a constant speed of v = 1.1 × 104 m/s. The mass of the planet is M = 6.04 × 1024 kg. The mass of the satellite is m = 1.2 × 103 kg. First, find an expression for the gravitational potential energy PE in terms of G, M, m, and R. a)Calculate the value of PE in joules. b)Enter an expression for the total energy E of the satellite in terms of m and v. c)Calculate the value of the total energy E in joules.arrow_forwardA sphere of copper has a radius of 50.0 cm and a mass of 4690 kg. A sphere of unknown metal has a radius of 30.0 cm. The surfaces of the sphere are 20.0 cm apart. The force of gravitational attraction between the two spheres is 0.372 nM. What is the mass of the unknown metal?arrow_forward
- An earth-like planet with a mass of 8.00×1024 kg has a space station of mass 4.70×104 kg orbiting it at a distance of 3.00×105 km. What is the gravitational potential energy between the space station and the planet? (We can simplify the Gravitational Constant G to 6.7x10-11 Nm2/kg) Jarrow_forwardThe International Space Station (ISS) completes one orbit of Earth in 92 minutes. What is the radius of the orbit in kilometers (km)? You may assume the orbit is circular. The mass of the ISS is 420 kg, and the mass of the Earth is 6.0×10246.0×1024kg. Newton’s gravitational constant is 6.7×10−11N⋅m2kg26.7×10−11kg2N⋅m2.arrow_forward(a) Based on the observations, determine the total mass M of the planet. (b) Which moon and planet of our solar system is the team observing? (Use literature.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios