Let Z be the set of all integers and let {n € Z]n = 4k, for some integer k} {n € Z]n = 4k + 1, for some integer k} A2 {n €Z]n = 4k + 2, for some integer k} and Az = {n € Z |n = 4k + 3, for some integer k}. s{Ao•Ag Az, Ag a partition of Z? Why or why not? O Yes. Z = A, U A1 U A, U A3, and A, n Az = Ø, A, N A2 = Ø, A, N Az = Ø, A N Az = Ø, A, N A3 = Ø, A, N Az = Ø. O Yes. Z = A, nA, N A, N A3, and A, U A, = Ø, A, U A, = Ø, A, U A3 = Ø, A, U A2 = Ø, A, U A3 = 0, A2 U A, = Ø. O No. Z + A, U A, U A, U A, and A, NA, # Ø. O No. Z = A, n A, N but A, U A, # Ø. O No. Z = A, U A, UA, U A3, but A, N A, # Ø.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Let Z be the set of all integers and let
Ao = {n €Z|n = 4k, for some integer k}
A1 = {n € Z |n = 4k + 1, for some integer k}
A2
{n €Z|n = 4k + 2, for some integer k} and
A3
{n €Z|n = 4k + 3, for some integer k}.
Is
a partition of Z? Why or why not?
O Yes. Z = A, U A1 U A, U A3, and A, N A, = Ø, Aon A2 = Ø, A, N A3 = Ø, A¡ N A2 = Ø, A1 N A3 = Ø, A2 N A3 = Ø.
O Yes. Z = A, n A, N A, N A3, and A, U A, = Ø, A,U A2 = Ø, A, U A3 = Ø, A¡ U A2 = Ø, A1 U A3 = Ø, A2 U A3 = Ø.
O No. Z # A, U A, U A, U A3 and A, NA, # Ø.
O No. Z = A, n A, NA, N but A, U A, # Ø.
O No. Z = A, U A, UA, U A3, but A, N A, # Ø.
Transcribed Image Text:Let Z be the set of all integers and let Ao = {n €Z|n = 4k, for some integer k} A1 = {n € Z |n = 4k + 1, for some integer k} A2 {n €Z|n = 4k + 2, for some integer k} and A3 {n €Z|n = 4k + 3, for some integer k}. Is a partition of Z? Why or why not? O Yes. Z = A, U A1 U A, U A3, and A, N A, = Ø, Aon A2 = Ø, A, N A3 = Ø, A¡ N A2 = Ø, A1 N A3 = Ø, A2 N A3 = Ø. O Yes. Z = A, n A, N A, N A3, and A, U A, = Ø, A,U A2 = Ø, A, U A3 = Ø, A¡ U A2 = Ø, A1 U A3 = Ø, A2 U A3 = Ø. O No. Z # A, U A, U A, U A3 and A, NA, # Ø. O No. Z = A, n A, NA, N but A, U A, # Ø. O No. Z = A, U A, UA, U A3, but A, N A, # Ø.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,