MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
6th Edition
ISBN: 9781119256830
Author: Amos Gilat
Publisher: John Wiley & Sons Inc
Bartleby Related Questions Icon

Related questions

Question
### Educational Website Content

#### Topic: Maximum Likelihood Estimation and Vibratory Stress Distribution

---

**Problem Statement:**

Let \( X_1, X_2, \ldots, X_n \) represent a random sample from a Rayleigh distribution with the following probability density function (pdf):

\[ f(x; \theta) = \frac{x}{\theta} e^{-x^2/(2\theta)} \quad \text{ for } \quad x > 0 \]

**Tasks:**

---

**(a) Determine the maximum likelihood estimator of \( \theta \).**

Options:
- \(\circ \quad \bar{X} / n \)
- \(\circ \quad (\Sigma X_i^2) / 2n \)
- \(\circ \quad (\Sigma X_i^2) / n \)
- \(\circ \quad \bar{X} / 2n \)
- \(\circ \quad (\Sigma X_i^2) / 2n \) 

**(b) Calculate the estimate from the following \( n = 10 \) observations on vibratory stress of a turbine blade under specified conditions. (Round your answer to three decimal places.)**

Observations:
- 12.38, 9.01, 11.00, 5.04, 6.31
- 7.56, 8.68, 8.25, 16.38, 11.86

(Enter the calculated estimate in the provided box.)

**(c) Determine the maximum likelihood estimate (MLE) of the median of the vibratory stress distribution.** 
   
Hint: First, express the median in terms of \( \theta \).

Options:
- \(\circ \quad 1.3863 \hat{\theta} \)
- \(\circ \quad (1.3863 \hat{\theta})^3 \)
- \(\circ \quad 3 \sqrt{1.3863 \hat{\theta}} \)
- \(\circ \quad (1.3863 \hat{\theta})^2 \)
- \(\circ \quad 1.3863 \hat{\theta}^2 \)

---

This problem set guides you through the process of deriving the maximum likelihood estimator for the Rayleigh distribution parameter, applying the estimator to given data, and determining the MLE of the median of the distribution.
expand button
Transcribed Image Text:### Educational Website Content #### Topic: Maximum Likelihood Estimation and Vibratory Stress Distribution --- **Problem Statement:** Let \( X_1, X_2, \ldots, X_n \) represent a random sample from a Rayleigh distribution with the following probability density function (pdf): \[ f(x; \theta) = \frac{x}{\theta} e^{-x^2/(2\theta)} \quad \text{ for } \quad x > 0 \] **Tasks:** --- **(a) Determine the maximum likelihood estimator of \( \theta \).** Options: - \(\circ \quad \bar{X} / n \) - \(\circ \quad (\Sigma X_i^2) / 2n \) - \(\circ \quad (\Sigma X_i^2) / n \) - \(\circ \quad \bar{X} / 2n \) - \(\circ \quad (\Sigma X_i^2) / 2n \) **(b) Calculate the estimate from the following \( n = 10 \) observations on vibratory stress of a turbine blade under specified conditions. (Round your answer to three decimal places.)** Observations: - 12.38, 9.01, 11.00, 5.04, 6.31 - 7.56, 8.68, 8.25, 16.38, 11.86 (Enter the calculated estimate in the provided box.) **(c) Determine the maximum likelihood estimate (MLE) of the median of the vibratory stress distribution.** Hint: First, express the median in terms of \( \theta \). Options: - \(\circ \quad 1.3863 \hat{\theta} \) - \(\circ \quad (1.3863 \hat{\theta})^3 \) - \(\circ \quad 3 \sqrt{1.3863 \hat{\theta}} \) - \(\circ \quad (1.3863 \hat{\theta})^2 \) - \(\circ \quad 1.3863 \hat{\theta}^2 \) --- This problem set guides you through the process of deriving the maximum likelihood estimator for the Rayleigh distribution parameter, applying the estimator to given data, and determining the MLE of the median of the distribution.
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Text book image
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Text book image
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Text book image
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
Text book image
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Text book image
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman