Let X, and X, be independent exponential distributions with the same parameter 1. What is the joint distribution of Y, = X, + X2 and Y, X1 ? What are the distributions of Y, and X1+X2 Y,?

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
Let \( X_1 \) and \( X_2 \) be independent exponential distributions with the same parameter \( \lambda \). What is the joint distribution of \( Y_1 = X_1 + X_2 \) and \( Y_2 = \frac{X_1}{X_1 + X_2} \)? What are the distributions of \( Y_1 \) and \( Y_2 \)?
Transcribed Image Text:Let \( X_1 \) and \( X_2 \) be independent exponential distributions with the same parameter \( \lambda \). What is the joint distribution of \( Y_1 = X_1 + X_2 \) and \( Y_2 = \frac{X_1}{X_1 + X_2} \)? What are the distributions of \( Y_1 \) and \( Y_2 \)?
Expert Solution
Step 1

Given:  X1 & X2 are independent random variables with pdfs

            f(x1)=λe-λx1; x1>0         &      f(x2)=λe-λx2;  x2>0

Then their joint pdf f(x1, x2) (say) is given by

       f(x1,x2)= f(x1)f(x2)= λ2e-λ(x1+x2)

We are given

       Y1=X1+X2   & Y2=X1X1+X2

First, we find the joint density of Y1  & Y2

Let T(x1,x2)=x1+x2, x1x1+x2, then T is a  bijection from [0,)×[0,) onto [0,)×[0,1]. Now we need to find (x1,x2) in terms of (y1,y2).

Multiplying Y1 & Y2 we get

           x1=y1y2  then    x2=y1-x1=y1-y1y2

So,         T-1(y1,y2)=y1y2, y1- y1y2

The Jacobian of transformation is

          J=δ(x1,x2)δy1δy2=δx1δy1δx2δy1δx1δy2δx2δy2=y21-y2y1  -y1=-y1

Thus the joint pdf of Y1 and Y2, g(y1, y2) is 

       g(y1,y2) = fX1X2(x1,x2)×|J|             = fX1(x1)fX2(x2)×y1             = fX1(y1y2)fX2(y1-y1y2)y1             = λe-λy1y2·λe-λ(y1-y1y2)y1           = λ2y1e-λy1 g(y1,y2)= λ2y1e-λy1;   y10, 0y21   0; otherwise

 Therefore, the marginal pdf of Y1 is 

            g(y1)=01g(y1,y2)dy2          = 01λ2y1e-λy1dy2          = λ2y1e-λy1y201          = λ2y1e-λy1  g(y1) =λ2y1e-λy1; y10  0;   otherwise

        

    

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Multivariate Distributions and Functions of Random Variables
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman