College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Latent Heats: A beaker of negligible heat capacity contains 456 g of ice at -25.0°C. A lab technician begins to supply heat to the container at the rate of 1000 J/min. How long after starting will the ice begin to melt, assuming all of the ice has the same temperature? The specific heat of ice is 2090 J/kg ∙ K and the latent heat of fusion of water is 33.5 × 104 J/kg.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- At a chemical plant where you are an engineer, a tank contains an unknown liquid. You must determine the liquids specific heat capacity. You put 0.500 kgkg of the liquid into an insulated metal cup of mass 0.200 kgkg. Initially the liquid and cup are at 20∘C∘C. You add 0.500 kgkg of water that has a temperature of 80∘C∘C. After thermal equilibrium has been reached, the final temperature of the two liquids and the cup is 58.2 ∘C∘C. You then empty the cup and repeat the experiment with the same initial temperatures, but this time with 1.00 kgkg of the unknown liquid. The final temperature is 49.4 ∘C∘C. Assume that the specific heat capacities are constant over the temperature range of the experiment and that no heat is lost to the surroundings. a,) Calculate the specific heat capacity of the liquid. b.)Calculate the specific heat capacity of the metal from which the cup is madearrow_forwardAn insulated Thermos contains 150 cm³ of hot coffee at 90.0°C. You put in a 11.0 g ice cube at its melting point to cool the coffee. By how many degrees has your coffee cooled once the ice has melted and equilibrium is reached? Treat the coffee as though it were pure water and neglect energy exchanges with the environment. The specific heat of water is 4186 J/kg-K. The latent heat of fusion is 333 kJ/kg. The density of water is 1.00 g/cm³. Number i Unitsarrow_forwardA 0.825 kg block of iron, with an average specific heat of 5.60 × 102 J/kg·K, is initially at a temperature of 254.0◦C. The block of iron is placed in a calorimeter with 16.4 g of water at 12.2◦C. What is the final thermal equilibrium temperature? If the answer if 100.0◦C, how much water is still in liquid form? Note: Treat the mass and heat capacity of the calorimeter as neglible.arrow_forward
- A 0.200-kg mass of metal with a specific heat of 1255.8 J/kg-°C, initially at 90°C, is placed in a 0.500-kg calorimeter, with a specific heat of 418.6 J/kg-°C, initially at 20°C. The calorimeter is filled with 0.100 kg of water, initially at 20°C. The specific heat of water is 4186 J/kg-°C. What is the final temperature once the combination of metal, calorimeter, and water reach equilibrium? O 70°C 40°C 60°C O 50°Carrow_forwardHow much thermal energy (in J) is required to boil 2.45 kg of water at 100.0°C into steam at 135.0°C? The latent heat of vaporization of water is 2.26 ✕ 106 J/kg and the specific heat of steam is 2010 J kg · °C . HINT Jarrow_forwardIn an electrically heated home, the temperature of the ground in contact with a concrete basement wall is 14.0 °C. The temperature at the inside surface of the wall is 21.4 °C. The wall is 0.12 m thick and has an area of 7.7 m2. Assume that one kilowatt hour of electrical energy costs $0.10. How many hours are required for one dollar's worth of energy to be conducted through the wall? Number Units the tolerance is +/-2%arrow_forward
- In an insulated container, you combine hot metal with ice. The ice starts at -20 degree C. The copper starts at 900 degree C. When 15 kg of the copper is combined with an unknown amount of ice, the system reaches equilibrium as soon as all of the ice has boiled to become steam. What is the final temperature of the copper?arrow_forwardYou drop an ice cube into an insulated container full of water and wait for the ice cube to completely melt. The ice cube initially has a mass of 60.0 g and a temperature of 0°C. The water (before the ice cube is added) has a mass of 850 g and an initial temperature of 30.0°C. What is the final temperature (in °C) of the mixture? (Assume no energy is lost to the walls of the container, or to the environment.)arrow_forwardA 283 g silver figure of a polar bear is dropped into the 249 g aluminum cup of a well-insulated calorimeter containing 265 g of liquid water at 20.9°C. The bear's initial temperature is 98.5°C. What is the final temperature of the water, cup, and bear when they reach thermal equilibrium? The specific heats of silver, aluminum, and liquid water are, respectively, 234 J/ (kg-K), 910 J/ (kg-K), and 4190 J/ (kg-K). final temperature: °Carrow_forward
- In a physics lab, students are conducting an experiment to learn about the heat capacity of different materials. The first group is instructed to add a number of 1.50 g pellets made of lead, at a temperature of 92.0°C, to 305 g of water at 16.0°C. A second group is given the same number of 1.50 g pellets as the first group, but these are now aluminum pellets. Assume that no heat is lost to or gained from the surroundings for either group. (a) If the final equilibrium temperature of the lead pellets and water is 25.0°C, how many whole pellets did the first group use in the experiment? The specific heat of lead is 0.0305 kcal/(kg · °C). pellets (b) Will the final equilibrium temperature for the second group be higher, lower, or the same as for the first group? The specific heat of aluminum is 0.215 kcal/(kg · °C). O higher O lower O the same (c) What is the equilibrium temperature of the aluminum and water mixture for the second group? °Carrow_forwardYou drop an ice cube into an insulated flask full of water and wait for the ice cube to completely melt. The ice cube initially has a mass of 90.0 g and a temperature of 0°C. The water (before the ice cube is added) has a mass of 850 g and an initial temperature of 22.0°C. What is the final temperature (in °C) of the mixture? (Assume no energy is lost to the walls of the flask, or to the environment.) °Carrow_forwardA 1.50 kg block of ice initially at a temperature of 0 °C is placed inside an apparatus that allows 150 kJ of heat to flow into the ice. What mass of ice melts as a result? O 0.45 kg O 0.75 kg O 1.33 kg O 2.23 kg O 1.00 kgarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON