A 0.825 kg block of iron, with an average specific heat of 5.60 × 102 J/kg·K, is initially at a temperature of 254.0◦C. The block of iron is placed in a calorimeter with 16.4 g of water at 12.2◦C. What is the final thermal equilibrium temperature? If the answer if 100.0◦C, how much water is still in liquid form?
A 0.825 kg block of iron, with an average specific heat of 5.60 × 102 J/kg·K, is initially at a temperature of 254.0◦C. The block of iron is placed in a calorimeter with 16.4 g of water at 12.2◦C. What is the final thermal equilibrium temperature? If the answer if 100.0◦C, how much water is still in liquid form?
Related questions
Question
A 0.825 kg block of iron, with an average specific heat of 5.60 × 102 J/kg·K, is initially at a temperature of 254.0◦C. The block of iron is placed in a calorimeter with 16.4 g of water at 12.2◦C. What is the final thermal equilibrium temperature? If the answer if 100.0◦C, how much water is still in liquid form?
Note: Treat the mass and heat capacity of the calorimeter as neglible.
Expert Solution
Step 1
Given:
The mass of the block of iron is 0.825 kg and its specific heat capacity is J/kg.K.
The initial temperature of the block of iron is 254 C.
The mass of water is 16.4 g and its temperature is 12.2 C.
Trending now
This is a popular solution!
Step by step
Solved in 3 steps