College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
In the very Dutch sport of Fierljeppen, athletes run up to a long pole and then use it to vault across a canal as shown in (Figure 1). At the very top of his arc, a 70 kg vaulter is moving at 2.9 m/s and is 5.5 m from the bottom end of the pole.
What is the magnitude of the vertical force that the pole exerts on the vaulter?
Express your answer with the appropriate units.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 2 steps with 1 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 30 kg child slides down a slide with h = 4.0 m and arrives at the ground with a speed of 6.0 m/s. The slide forms the arc of a circle with a radius of 21 m with the ground tangent to the bottom of the slide. Determine the average friction force acting on the child. Hint: Use h = R(1 - cos(θ)) and s = Rθ where θ is in radians and s = arc length.arrow_forwardpls helparrow_forwardThe two blocks are connected by a massless rope that passes through a pulley. Mass of first block is m1 = 1 kg, mass of the second block is m2= 5 kg. Mass of the pulley is M = 2 kg. Radius of the pulley is R= 10 cm. First block is placed on the 30 incline and the second block is hanging above the table at the height of 40 cm. Then, the system is released and the first block starts sliding up the incline and the second block starts falling toward the table. a) forces that apply to the pulley. b) pulley. Consider the pulley to be a disc and use disc's moment of inertia(/ = MR?/2) c) acceleration of the blocks. Draw the FBD for both blocks and draw separately the Write down equations of motion for the blocks and Using the equations from part (b) to calculate the Finally, find the velocity that the second block will d) acquire just before hitting the table using energy. m1 m2arrow_forward
- A small block with mass 0.0500 kg slides in a vertical circle of radius 0.475 m on the inside of a circular track. During one of the revolutions of the block, when the block is at the bottom of its path, point A, the magnitude of the normal force exerted on the block by the track has magnitude 3.80 N . In this same revolution, when the block reaches the top of its path, point B, the magnitude of the normal force exerted on the block has magnitude 0.665 N . How much work was done on the block by friction during the motion of the block from point A to point B?arrow_forward1. A 75-kg merry go round worker stands on the ride's platform 4.5m from the center and her speed as she goes around the circle is 4.1 m/s. a) Draw a sketch of the scenario. b) Determine the force of friction necessary to keep her from falling off the platform. c) How far does she travel after 1 revolution? d) What is the period T (in seconds) after 1 revolution? Round answers to nearest tenth.arrow_forwardA small block with mass 0.0300 kg slides in a vertical circle of radius 0.550 m on the inside of a circular track. During one of the revolutions of the block, when the block is at the bottom of its path, point A, the magnitude of the normal force exerted on the block by the track has magnitude 3.75 N. In this same revolution, when the block reaches the top of its path, point B, the magnitude of the normal force exerted on the block has magnitude 0.685 N. Part A How much work was done on the block by friction during the motion of the block from point A to point B? Express your answer with the appropriate units. W friction = Submit μA Value Request Answer Units ?arrow_forward
- Children playing pirates have suspended a uniform wooden plank with mass M = 13.4 kg, length ℓ = 2.40 m, and angle θ = 35.0°, as shown in the figure. Sophia, with a mass of m = 21.6 kg, is made to "walk the plank" and is d = 1.5 m from reaching the end of the plank. What is the tension acting on the rope at the end (i.e value of F3)?arrow_forwardThe drawing shows two identical systems of objects; each consists of the same three small balls connected by massless rods. In both systems the axis is perpendicular to the page, but it is located at a different place, as shown. The same force of magnitude F is applied to the same ball in each system (see the drawing). The masses of the balls are m1 = 9.0 kg, m2 = 6.1 kg, and m3 = 7.9 kg. The magnitude of the force is F = 441 N. (a) For each of the two systems, determine the moment of inertia about the given axis of rotation. (b) Calculate the torque (magnitude and direction) acting on each system. (c) Both systems start from rest, and the direction of the force moves with the system and always points along the 4.00-m rod. What is the angular velocity of each system after 5.35 s?arrow_forwardOne end of a string is wrapped several times around a pulley of mass 0.92 kgkg that is oriented vertically. The other end of the string is connected to a block of mass 0.35 kg, which is then slowly lowered until the string becomes taut. After which the person lets go of the block completely, thus allowing the block to descend and the pulley to rotate in unison. What is the magnitude of the acceleration of the block after the person has let go?arrow_forward
- A small block with mass 0.0425 kg slides in a vertical circle of radius 0.450 m on the inside of a circular track During one of the revolutions of the block, when the block is at the bottom of its path, point A, the magnitude of the normal force exerted on the block by the track has magnitude 3 85 N. In this same revolution, when the block reaches the top of its path, point B, the magnitude of the normal force exerted on the block has magnitude 0575 N Part A How much work was done on the block by friction during the motion of the block from point A to point B Express your answer with the appropriate units. Writion 0.15 Submit → J Previous Answers Request Answer X Incorrect; Try Again: 2 attempts remaining Check your signs ?arrow_forwardThe tension is growing!Context At your summer job, your supervisor wants to test your physics skills. A new winch (a cable driven by a motor) is to be used to hoist loads up an inclined ramp. Your supervisor is worried about the packages arriving too quickly at the top of the ramp. Constraints The inclined ramp is made up of small cylinders that are free to rotate: there is no friction between the ramp and the load.The angle theta of the ramp from the horizontal is known.The winch cable exerts a known force.The cable is oriented at an angle a from the horizontal.The charge, initially immobile, has a known mass.The length of the ramp is known. Schematization Draw a diagram of the object that interests us. Draw your x and y axes. Draw and name each force experienced by the object that interests us. Modelization Build a model to calculate the final speed of the load as it arrives at the top of the ramp, given the known parameters. Then test your model with the following values: Ramp…arrow_forwardSuppose the coefficient of static and kinetic friction between the road and the tires on a car is 0.60 and 0.30 respectively. The car has no negative lift force. What is the maximum possible speed (in m/s) of the car without slipping as it rounds a flat curve of 32 m radius? Note: write your answer with one decimal place. Answer.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON