College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
In the figure, a wire shaped like a circular loop of radius r =15.0 cm is stretched by pulling on its sides so that the area in the loop decreases to zero in 0.250 s. This is done in the presence of a 0.800-T magnetic field that comes out of the page, as shown in the figure. What is the magnitude of the induced EMF and the direction of the current induced in the loop as it's being stretched?
A) 0.672 V
B) 0.226 V
C) 56. 5 mV
D)0.113 V
E) 0.480 V
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution
Trending nowThis is a popular solution!
Step by stepSolved in 4 steps with 3 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 23-turn circular coil of wire has diameter 0.99 m. It is placed with its axis along the direction of the Earth's magnetic field of 58.0 μT and then in 0.200 s is flipped 180°. An average emf of what magnitude is generated in the coil? mV Need Help? Watch Itarrow_forwarda flat circular coil with 150 turns, a radius of 6.00 * 10^-2 m, and a resistance of 0.30 is exposed to an external magnetic feild that is directed perpendicular to the plane of the coil. the magnitude of the external magnetic feild is changing with time at a rate of 0.80 T/s. a. find the magnitude of the induced current. b. find the magnitude of the induced magnetic feild B(induced) at the center of the coil.arrow_forwardI want to generate an average emf of 10 V with a circular coil of wire with diameter 10 cm and 500 coils. How much time should I take to rotate the coil 90 degrees if the coil is in a magnet field of magnitude 9e-3 T? The loop starts flat on the xy plane and the magnetic field at this time is pointed in the positive x direction. The loop rotates about the y-axis. a) 0.00353 s b) 283.32 s c) 7.06E-6 s d) 3.54E-6 sarrow_forward
- 7arrow_forwardA circular loop in the plane of a paper lies in a 0.65 T magnetic field pointing into the paper. The loop's diameter changes from 19.5 cm to 5.4 cm in 0.55 s. 1) What is the direction of the induced current? 2) What is the magnitude of the average induced emf? 3) What is the average induced current if the coil resistance is 4.7 Ω ?arrow_forwardA circular loop in the plane of a paper lies in a 0.65 T magnetic field pointing into the paper. The loop's diameter changes from 21.5 cm to 6.8 cm in 0.52 s . What is the magnitude of the average induced emf?arrow_forward
- An electromagnet is turned on to produce a magnetic field that stabilizes at 3 T after 0.5 s. A single wire loop of radius 0.1 m is aligned perpendicular to the magnetic field. What is the average emf produced in the wire loop over the time it takes the current to stabilizearrow_forwardSuppose a magnetic field B(t) oscillates with frequency w. A circular loop of copper lies perpendicular to the magnetic field. The radius of the circular loop is r. a. Write down an expression for the magnetic field as a function of time. Determine the induced emf & in the loop of wire and use this to calculate the current generated in the loop as a function of time. b. What is the power dissipation in the wire as a function to time? Make a sketch of this function. What is the average power Pave dissipation in the wire? Hint: what is the average value of the function you sketched? C. Recall that power is a rate of energy transfer, and that power dissipated by a resistor leads to a change in the thermal energy of the material (in this case the copper wire). We can relate a change in thermal energy to a change in temperature by AT where M is the total mass and c ΔΕth Mc is the specific heat capacity of the material (see page 526 for details). Find an expression for a dT - differential…arrow_forwardA metal rod 0.84 m long moves with a speed of 1.9 m/s perpendicular to a magnetic field. If the induced emf between the ends of the rod is 0.39 V , what is the strength of the magnetic field? Express your answer using two significant figures.arrow_forward
- A square coil of wire has 10 turns and an area of 20 cm^2. The square coil is located in a variable magnetic field whose behavior is shown on the graph. The magnetic field is directed at an angle of 45° relative to the normal to the plane of the square coil. a. What is the average emf induced in the coil in the time interval from t=7.50 s to 10.0 s? b. If the wire has a resistance of 0.75 Ω determine the induced current for the interval from part (a)?arrow_forwardA loop of area 225 cm2 has 24 turns of wire. It is in a magnetic field of strength 3.6 x 10-2 T. To begin with, its plane (face) is parallel to the magnetic field lines. In a time of 0.15 s it is rotated so that its plane is perpendicular to the magnetic field lines. What is the average emf induced in the loop during the one-quarter rotation?arrow_forwardThe figure below displays a circular loop of conducting wire in a uniform magnetic field pointing into the page. The radius of the loop is 10.0 cm and the magnitude of the field is 0.160 T. You grab points A and B and pull them in opposite directions, stretching the loop until its area is nearly zero, taking a time of 0.170 s to do so. What is the magnitude of the average induced emf in the loop (in mV) during this time? * х * X x х A x * * x K mV X x * x. B * * *arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON